【题目】如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为______.
【答案】25
【解析】
如图,可知圆心O在△ABC内所能到达的区域为△DEF的边以及其内部,其中点D在∠BAC的角平分线上,且到AB、AC边的距离为1,点E在∠ACB的角平分线上,且到CA、CB边的距离为1,点F在∠ABC的角平分线上,且到BA、BC边的距离为1,DH、EP分别垂直于AC,EM、FQ分别垂直于BC,DK、FN分别垂直于AB,
则有AH=AK,CP=CM=EM=1,BN=BQ,四边形EDPH、EFQM、DFNK是矩形,△DEF是直角三角形且△DEF∽△ACB,继而根据已知可分别求出DE、EF、DF的长,再设AH=AK=x,BN=BQ=y,
则有AC =x+,BC=5+y,AB= x+y+,再根据AC:BC:AB=5:12:13列方程组可求出x、y的值,继而根据三角形的周长公式进行求解即可.
如图,可知圆心O在△ABC内所能到达的区域为△DEF的边以及其内部,其中点D在∠BAC的角平分线上,且到AB、AC边的距离为1,点E在∠ACB的角平分线上,且到CA、CB边的距离为1,点F在∠ABC的角平分线上,且到BA、BC边的距离为1,DH、EP分别垂直于AC,EM、FQ分别垂直于BC,DK、FN分别垂直于AB,
则有AH=AK,CP=CM=EM=1,BN=BQ,四边形EDPH、EFQM、DFNK是矩形,△DEF是直角三角形且△DEF∽△ACB,
又∵AC:BC:AB=5:12:13,
∴DE:EF:DF=5:12:13,
又∵S△DEF=DEEF=,
∴DE=,EF=4,
∴DF=,
∴PH=DE=,MQ=EF=4,NK=DF=,
设AH=AK=x,BN=BQ=y,
则有AC=AH+HP+CP=x+,BC=CM+MQ+BQ=5+y,AB=AK+NK+BN=x+y+,
又∵AC:BC:AB=5:12:13,
∴,
解得:,
∴AC=+,BC=10,AB=++5,
∴AC+BC+AB=++10+++5=7+3+10+5=25,
故答案为:25.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为1,将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.下列结论中正确的有( )
①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某家庭2018年每月交通费支出的条形统计图,若该家庭2018年月交通费平均支出为a元,则下列结论中正确的是( )
A. 200≤a≤220B. 220≤a≤240C. 240≤a≤260D. 260≤a≤280
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,按以下步骤作图:
①以B为圆心,任意长为半径作弧,分别交AB.BC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;③作射线BE;④用同样的方法作射线CF.BE交CF于点O.
请根据作图回答下列问题:
(1)O是△ABC的 ;
A.外心 B.内心 C.重心
(2)若AB=5,AC=12,BC=13,求O到BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC为等边三角形,点E为△ABC内部一点,△ABE绕点B顺时针旋转60°得到△CBD,且A、D、E三点在同一直线上,AD与BC交于点F,则以下结论中:①△BED为等边三角形;②△BED与△ABC的相似比始终不变;③△BDE∽△ADB;④当∠BAE=45°时, 其中正确的有_____(填写序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑车前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离S(km)与出发时间x(h)之间的函数关系式如图2中折线段CD-DE-EF所示.
(1)小丽和小明骑车的速度各是多少?
(2)求E点坐标,并解释点的实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.
(1)证明小明所作的四边形DEFG是菱形;
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )
A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t的函数图象大致为( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com