精英家教网 > 初中数学 > 题目详情
20.已知抛物线y=ax2+bx+4在坐标系中的位置如图所示,它与x,y轴的交点分别为A(-1,0),B,P是其对称轴x=1上的动点,根据图中提供的信息,得出以下结论:
①2a+b=0,
②x=3是方程ax2+bx+4=0的一个根,
③△PAB周长的最小值是5+$\sqrt{17}$,
④9a+4<3b.
其中正确的是(  )
A.1个B.2个C.3个D.4个

分析 ①根据对称轴方程求得a、b的数量关系;
②根据抛物线的对称性知抛物线与x轴的另一个交点的横坐标是3;
③利用两点间直线最短来求△PAB周长的最小值;
④根据图象知,当x=-3时,y<0,得到9a-3b+4<0,即9a+4<3b.

解答 解:①根据图象知,对称轴是直线x=-$\frac{b}{2a}$=1,则b=-2a,即2a+b=0.
故①正确;
②根据图象知,点A的坐标是(-1,0),对称轴是x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故②正确;
③如图所示,点A关于x=1对称的点是A′,即抛物线与x轴的另一个交点.
连接BA′与直线x=1的交点即为点P,
则△PAB周长的最小值是(BA′+AB)的长度.
∵A(-1,0),B(0,4),A′(3,0),
∴AB=$\sqrt{17}$,BA′=5.即△PAB周长的最小值是5+$\sqrt{17}$.
故③正确;
④根据图象知,当x=-3时,y<0,
∴9a-3b+4<0,即9a+4<3b,
故④正确.
综上所述,正确的结论是:①②③④.
故选D.

点评 本题考查的是二次函数综合题,涉及到二次函数图象与系数的关系,二次函数图象的性质以及两点之间直线最短.解答该题时,充分利用了抛物线的对称性.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.某服装批发商计划以每件500元的单价对外批发销售某种品牌的羽绒服,由于临近换季,为了尽快清仓,回收资金,对价格经过两次下调后,以每件320元的单价对外销售.
(1)求平均每次下调的百分率;
(2)请按此调幅,预测第三次下调后的销售单价是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,O是直线AB上一点,∠AOC=50°17′,则∠BOC=129°43′.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ABC的周长为(  )
A.10B.14C.10或14D.8或10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,△ABC 与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.
(1)画出位似中心O;
(2)△ABC与△A′B′C′的相似比为2:1,面积比为4:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知二次函数y=ax2+bx+c的图象经过A(1,0),B(3,0),C(0,-3)
(1)求此二次函数的解析式以及顶点D的坐标;
(2)如图①,过此二次函数抛物线图象上一动点P(m,n)(0<m<3)作y轴平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,说明理由.
(3)如图②,过点A作y轴的平行线交直线BC于点F,连接DA、DB、四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点F重合时立即停止运动,求运动过程中四边形OAFC与四边形ADBF重叠部分面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,AB∥CD,E是AB的中点,∠CEA=∠DEB.
(1)试判断△CED的形状并说明理由;
(2)若AC=5,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知:∠ACB=∠ADC=90°,AD=2,CD=2,当AB的长为4时,△ACB与△ADC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.用配方法解方程3x2-6x+2=0,则方程可变形为(  )
A.(x-3)2=$\frac{2}{3}$B.3(x-1)2=$\frac{2}{3}$C.(3x-1)2=1D.(x-1)2=$\frac{1}{3}$

查看答案和解析>>

同步练习册答案