精英家教网 > 初中数学 > 题目详情

【题目】某玩具店进了一排黑白塑料球,共5箱,每箱的规格、数量都相同,其中每箱中装有黑白两种颜色的塑料球共3000个,为了估计每箱中两种颜色球的个数,随机抽查了一箱,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的概率在0.8附近波动,则此可以估计这批塑料球中黑球的总个数,请将黑球总个数用科学记数法表示约为________个.

【答案】1.2×104

【解析】

因为摸到黑球的频率在0.8附近波动所以摸出黑球的概率为0.8,再设出黑球的个数根据概率公式列方程解答即可

设黑球的个数为x

∵黑球的频率在0.8附近波动∴摸出黑球的概率为0.8,0.8,解得x=2400.

所以可以估计黑球的个数为2400×5=12000=1.2×104

故答案为:1.2×104

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场销售某种品牌的手机,每部进货价为2500.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4.

(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?

(2)若设每部手机降低x,每天的销售利润为y,试写出yx之间的函数关系式.

(3)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程x2-(k+2)x+k-1=0

(1)若方程的一个根为 -1,求的值和方程的另一个根;

(2)求证:不论取何值,该方程都有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论中错误的有( )

RtABC已知两边长分别为34,则第三边的长为5;

ABC的三边长分别为ABBCAC+=A=90°;

ABCA:∠B:∠C=1:5:6,ABC是直角三角形

若三角形的三边长之比为3:4:5,则该三角形是直角三角形

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则p,q使关于x的方程x2+px+q=0有实数根的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=B.

(1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax+bx+4x轴交于点A(-3,0)和B(2,0),与y轴交于点C.

(1)求抛物线的解析式;

(2)如图1,若点DCB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;

(3)如图2,若点D为直线BC或直线AC上的一点,Ex轴上一动点,抛物线y=ax+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为,则正方形③的边长为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点OAPB的平分线上,OPA相切于点C

1)求证:直线PBO相切;

2PO的延长线与O交于点E.若O的半径为3PC=4.求弦CE的长.

查看答案和解析>>

同步练习册答案