如图,在△ABC中,∠B=30°,∠C=45°,AC=2,点P是△ABC三条边上的任意一点.若△ACP为等腰三角形,在图中作出所有符合条件的点P,要求:
①尺规作图,不写作法,保留痕迹;
②若符合条件的点P不只一个,请标注P1、P2…
![]()
科目:初中数学 来源: 题型:
在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是( )
(1)AE平分∠DAB;
(2)△EBA≌△DCE;
(3)AB+CD=AD;
(4)AE⊥DE;
(5)AB∥CD.
![]()
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:
(1)△GDF≌△CEF;
(2)△ABC是等腰三角形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )
![]()
A.1对 B.2对 C.3对 D.4对
查看答案和解析>>
科目:初中数学 来源: 题型:
课本等腰三角形的轴对称性一节,我们最后通过直角三角形纸片折叠发现了定理“直角三角形斜边上的中线等于斜边的一半”.
(1)小聪同学画出了如图①所示的一个特殊的直角三角形,其中∠BAC为直角,AD为斜边BC上的中线,∠B=30°.它证明上面定理思路如下:延长AD至点E,使DE=AD
,连结BE,再证△ABC≌△BAE,你认为小聪能否完成证明?__________(只需要填“能”或“不能”);
(2)小聪同学还想借助图②,任意的Rt△ABC为直角,AD为斜边BC上的中线,证明或推翻结论AD=
BC,请你帮助小聪同学
完成;
(3)如图③,在△ABC中AD⊥BC,垂足为D,如果CD=1,AD=2,BD=4,求△ABC的中线AE的长度.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com