精英家教网 > 初中数学 > 题目详情
6.图中为轴对称图形的是(  )
A.(1 )(2)B.(1)(4)C.(2)(3)D.(3)(4)

分析 根据轴对称图形的概念对各图形判断即可得解.

解答 解:(1)图形是轴对称图形;
(2)图形不是轴对称图形;
(3)图形不是轴对称图形;
(4)图形是轴对称图形;
综上所述,是轴对称图形的是(1)(4).
故选B.

点评 本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形…如此下去,则第2016个图中共有正方形的个数为(  )
A.2016B.2019C.6046D.6050

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知,正方形ABCD,点P在对角线BD上,连接AP、CP(如图①)
(1)求证:AP=CP.
(2)将一直角三角板的直角顶点置于点P处并绕点P旋转,设两直角边分别交DC、BC于E、F,
a.若旋转到图②位置,使PE与PA在一直线上,求证:PF=PA.
b.若旋转到图③位置且PD:PB=2:3,求PE:PF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简再求值:
(1)$\frac{x}{x-3}$•$\frac{{{x^2}-9}}{{{x^2}-2x}}$-$\frac{x}{x-2}$,其中x=10;
(2)先化简($\frac{x+1}{x-1}$+1)÷$\frac{{{x^2}+x}}{{{x^2}-2x+1}}$+$\frac{2-2x}{{{x^2}-1}}$,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|-c=0.化简:|b|-|a+b|-|c-b|+|a-c|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线l.
(1)当点D恰好落在垂线l上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△A′O′B′,当点O′与点E重合时停止平移.设平移的时间为t秒,△A′O′B′与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若B′O′与线段BA交于点P,连接PD,PA′,A′D,是否存在这样的t,使△PA′D是等腰三角形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC边于点Q,以PQ为一边作正方形PQMN,使点N落在射线PD上,连CM、DM,设运动时间为t(单位:s)
(1)用含t的代数式表示BQ与PQ长;
(2)若△DMN与△CMQ的面积之比为5:3,求出t的值;
(3)在运动过程中,是否存在t的值,使得△CMQ与△DMN相似,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,直线y=$\frac{3}{4}$x-b与抛物线y=-$\frac{1}{4}$x2交于A(-4,-4)和B两点,与y轴交于点C.
(1)求b的值及B点的坐标;
(2)若以AB为直径的圆与直线x=m有公共点,求m的取值范围;
(3)如图2,把抛物线向右平移2个单位,再向上平移n个单位(n>0),抛物线与x轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值的情况?若存在,请求出这个最小值和此时n的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为(  )
A.4.07×105B.4.07×106C.4.07×107D.4.07×108

查看答案和解析>>

同步练习册答案