【题目】如图,在平面直角坐标系中,点A(a,0)是x轴正半轴上一点,PA⊥x轴,点B坐标为(0,b)(b>0),动点M在y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.
(1)若a=2b,点D坐标为(m,n),求的值;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求经过点B,Q两点的直线解析式;
(3)当点Q在射线BD上时,且a3,b1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
【答案】(1);(2);(3)
【解析】
(1)证明得,从而得,,故可得m,n的值,进一步可得的值;
(2)由菱形的性质可证明结合菱形BQNC的面积求出点B、D的坐标,设出直线BD的解析式,将B、D点的坐标代入解析式从而求解即可,
(3)分两类进行讨论,当点Q在线段BD上,根据题干条件求出AQ的长,进而求出四边形的周长,当点Q在线段BD的延长线上,依然根据题干条件求出AQ的长,再进一步求出四边形的周长.
(1),轴
.
,为,,
,,
,
(2)如图,
四边形是菱形,
,.
,是的中点,
.
,.
在和中,
,
.
.
四边形,
.
,,
,
设经过点,两点的直线解析式为y=kx+b,
把,代入解析式得,,
解得,
∴经过点,两点的直线解析式为:
(3),,
.
∵DA⊥x轴,
∴DA//y轴,
∴∠DAB=∠ABO,
又∠AOB=∠DBA
,
.
.
①如图,当点在线段上,
,为的中点,
.
四边形是平行四边形,,,.
,
.
.
四边形.
②如图,当点在线段的延长线上,
,为的中点,.
四边形是平行四边形,,.
.
.
平行四边形.
科目:初中数学 来源: 题型:
【题目】公历3月12日是植树节,为宣传保护数目,激发人们爱林造林的热情,政府投资13万元给某村民小组用于购买与种植两种树苗共3000棵,完成这项种植后,剩余的款项作为村民小组的纯收入,已知用160元购买树苗比购买树苗多3棵,这两种树苗的单价、成活率及移栽费用见下表:
(1)求表中的值;
(2)设购买树苗棵,其它购买的是树苗,把这些树苗种植完成后,村民小组获得的纯收入为元,请你写出与之间的函数关系式;
(3)若要求这批树苗种植后,成活率达到93%以上(包含93%),则最多种植树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?
树苗品种 | 树苗 | 树苗 |
购买价格(元/棵) | ||
树苗成活率 | 90% | 95% |
移栽费用(元/棵) | 3 | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统汁图,请根据图中信息解答下列问题:
(l)本次抽取样本容量为____,扇形统计图中A类所对的圆心角是____度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)求t=9时,△PEF的面积;
(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;
(3)当t为何值时,△EOP与△BOA相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,已知正方形ABCD的边长是4,M在DC上,M是CD的中点,点P是AC边上的一动点,则当DP+MP的值最小时,在备用图(答题卷上)中用尺规作出点P的位置,并直接写出DP的长是?
(2)如图②,已知正方形ABCD的边长是4,点M是DC上的一个动点,连结AM,作BP⊥AM于点P,连结DP,当DP最小时,在备用图(答题卷上)中用尺规作出点P的位置,并直接写出DP的长是?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明与小亮两个人打算骑共享单车骑行出游,两人打开手机APP进行选择,已知附近共有3种品牌的5辆车,其中A品牌与B品牌各有2辆,C品牌有1辆,手机上无法识别品牌,且有人选中车后其他人无法再选.
(1)若小明首先选择,则小明选中A品牌单车的概率为 ;
(2)求小明和小亮选中同一品牌单车的概率.(请用“画树状图”或“列表”的方法给出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线过点,,点为直线下方抛物线上一动点,为抛物线顶点,抛物线对称轴与直线交于点.
(1)求抛物线的表达式与顶点的坐标;
(2)在直线上是否存在点,使得,,,为顶点的四边形是平行四边形,若存在,请求出点坐标;
(3)在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.
(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com