【题目】如图1,在平面直角坐标系中,,点的坐标为,,点为线段上的动点(点不与、重合),连接,作,且,过点作轴,垂足为点.
(1)求证:;
(2)猜想的形状并证明结论;
(3)如图2,当为等腰三角形时,求点的坐标.
【答案】(1)见解析;(2)为等腰直角三角形,理由见解析;(3)点的坐标为
【解析】
(1)根据垂直的定义得到∠ACD=90°,根据余角的性质得到∠ACO=∠CDE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AO=CE,CO=DE,求得OB=CE,得到OC+CB=BE+CB,由等腰直角三角形的判定定理即可得到结论;
(3)设D点的纵坐标为m,当△BCD为等腰三角形时,①BC=BD,②CD=BD=m,③当CD=BC>CE,根据题意列方程即可得到结论.
解:(1)∵,
∴,
∴,
∵轴,,
∴,
∴,
∴.
在和中,
,
∴.
(2)为等腰直角三角形.
理由如下:
∵,
∴,,
∵,
∴,
∴,
即,
∵,
∴为等腰直角三角形.
(3)设D点的纵坐标为m,
当△BCD为等腰三角形时,
①BC=BD,∵△BDE是等腰直角三角形,
∴DE=BE=m,
∴BD=BC=m,
∵CE=AO=1,
∴m+m=1,
∴m=-1,
∴D(,-1);
②CD=BD=m,
∵OC=DE=m,
∴AC=CD==m,
解得:m=±1(舍去),
③当CD=BC>CE(这种情况不存在),
综上所述,当△BCD为等腰三角形时,点D的坐标(,-1).
科目:初中数学 来源: 题型:
【题目】完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作,,以,分别作为一个点的横坐标与纵坐标,定义点在反比例函数上为事件(为整数),当的概率最大时,则的所有可能的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年,国家大力提倡从纯燃油汽车向新能源汽车转型.某汽车制造企业推出了一款新型油电混合动力汽车(在行驶过程中,既可以使用汽油驱动汽年,也可以使用电力驱动汽车,汽油驱动和电力驱动不同时工作).经试验,该型汽车从甲地驶向乙地,只用汽油进行驱动,费用为56元,只用电力进行驱动,费用为20元.已知每行驶1千米,只用汽油驱动的费用比只用电力驱动的费用多0.36元.
(1)求每行驶1千米,只用汽油驱动的费用.
(2)要使从甲地到乙地所需要的燃油费用和电力费用不超过38元,则至少要用电力驱动行驶多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂甲、乙两个车间各有工人200人,为了解这两个车间工人的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据从甲、乙两个车间各抽取20名工人进行生产技能测试,测试成绩如下:
甲:78 86 74 85 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙:93 67 88 81 72 81 94 83 77 83 80 81 64 81 73 78 82 80 70 52
整理数据按如下分数段整理、描述这两组样本数据:
50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤99 | |
甲 | 0 | _____ | 11 | ______ | 1 |
乙 | 1 | 2 | 5 | 10 | ______ |
(说明:成绩80分及以上为生产技能优秀,70~79分为生产技能良好,60~69分为生产技能合格,60分以下为生产技能不合格)
分析数据两组样本数据的平均数、中位数、众数如表所示:
平均数 | 中位数 | 众数 | |
甲 | _____ | 77.5 | 75 |
乙 | 78 | _____ | ______ |
得出结论可以推断_____车间工人的生产技能水平较高,理由为______.(至少从两个角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1、图2,在圆O中,OA=1,AB=,将弦AB与弧AB所围成的弓形(包括边界的阴影部分)绕点B顺时针旋转α度(0≤α≤360),点A的对应点是A′.
(1)点O到线段AB的距离是 ;∠AOB= °;点O落在阴影部分(包括边界)时,α的取值范围是 ;
(2)如图3,线段B与优弧ACB的交点是D,当∠A′BA=90°时,说明点D在AO的延长线上;
(3)当直线A′B与圆O相切时,求α的值并求此时点A′运动路径的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使点A的坐标为(﹣2,4),点B的坐标为(﹣4,2);
(2)在第二象限内的格点上画一点C,连接AC,BC,使△BC成为以AB为底的等腰三角形,且腰长是无理数.
①此时点C的坐标为 ,△ABC的周长为 (结果保留根号);
②画出△ABC关于y轴对称的△A′B'C′(点A,B,C的对应点分别A',B',C′),并写出A′,B′,C′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠ACB=90°,AC=BC,∠CAD=∠CBD.
(1)求证:CD平分∠ACB;
(2)点E是AD延长线上一点,CE=CA,CF∥BD交AE于点F,若∠CAD=15°,
求证:EF=BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程有两个不相等的实数根,.
求a的取值范围;
是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AH⊥BC,垂足为H,D为直线BC上一动点(不与点BC重合),在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE.
(1)当D在线段BC上时,求证:△BAD≌△CAE;
(2)当点D运动到何处时,AC⊥DE,并说明理由;
(3)当CE∥AB时,若△ABD中最小角为20°,试探究∠ADB的度数(直接写出结果,无需写出求解过程).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com