精英家教网 > 初中数学 > 题目详情

【题目】如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BEAD于点F.

(1)求证:△BDF是等腰三角形;

(2)如图2,过点DDGBE,交BC于点G,连接FGBD于点O.

①判断四边形BFDG的形状,并说明理由;

②若AB=6AD=8,求FG的长.

【答案】1)见解析;(2)①菱形,见解析;②.

【解析】

1)根据两直线平行内错角相等及折叠特性判断;

2)①根据已知矩形性质及第一问证得邻边相等判断;

②根据折叠特性设未知边,构造勾股定理列方程求解.

(1)证明:如图1,根据折叠,∠DBC=DBE

ADBC

∴∠DBC=ADB

∴∠DBE=ADB

DF=BF

∴△BDF是等腰三角形;

(2)①∵四边形ABCD是矩形,

ADBC

FDBG

又∵DGBE

∴四边形BFDG是平行四边形,

DF=BF

∴四边形BFDG是菱形;

②∵AB=6AD=8

BD=10.

OB= BD=5.

假设DF=BF=x,∴AF=ADDF=8x.

∴在直角△ABF,AB+AF=BF,6+(8x) =x

解得x=

BF=

FO=

FG=2FO=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列方程

(1)25x2+10x+1=0(公式法) (2) 7x2 -23x +6=0;(配方法)

(3) (分解因式法) (4)x2-4x-396=0(适当的方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,AB=ACBDACDCEABEBDCE相交于F.

求证:AF平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知:在菱形ABCD中,EF分别是BCCD上的点,且CE=CF

(1)求证:△ABE≌△ADF

(2)过点CCGEAAF于点H,交AD于点G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线ACBD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BCQ点.

1)求证:四边形PBQD为平行四边形.

2)若AB6cmAD8cmP从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y,y(km)行驶时间为t(h).

(1)图2已画出y与t的函数图象,其中a= ,b= ,c=

(2)分别写出0t2及2<t4时,y与时间t之间的函数关系式.

(3)在图2中补画y与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列各式及其验证过程:

,验证:

,验证:

1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证;

2)针对上述各式反映的规律,写出用为自然数,且)表示的等式,并进行验证;

3)用为任意自然数,且)写出三次根式的类似规律,并进行验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行向卷调查,问卷调查的结果分为ABCD四类,其中,A 类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示不太了解,学生可根据自己的情况任途其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:

1)本次共调查了学生_____人,被调查的学生中,类别为C的学生有_____人;

2)求类别为A的学生数,并补全条形统计图;

3)求扇形统计图中类别为 D的学生数所对应的圆心角的度数;

4)若该校有学生 1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?

查看答案和解析>>

同步练习册答案