【题目】如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km)行驶时间为t(h).
(1)图2已画出y甲与t的函数图象,其中a= ,b= ,c= .
(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.
(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.
【答案】(1)a=60,b=2,c=4.
y乙=60-30t(0≤t≤2) y乙=30t-60(2<t≤4).
相遇次数为2.
【解析】
试题(1)由函数图象的数据,根据行程问题的数量关系就可以求出结论;
(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b;当2<t≤4时,设y乙与时间t之间的函数关系式为y乙=k1x+b1;由待定系数法就可以求出结论;
(3)通过描点法画出函数图象即可.
试题解析:(1)由题意,得a=60,b=2,c=4.故答案为:60,2,4;
(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b,由题意,得,
解得:,∴y乙=-30t+60
当2<t≤4时,设y乙与时间t之间的函数关系式为y乙=k1x+b1,由题意,得,
解得:,∴y乙=30t-60.
(3)列表为:
t | 0 | 2 | 4 |
y乙=-30t+60(0≤t≤2) | 60 | 0 | |
y乙=30t-60(2<t≤4) | 0 | 60 |
描点并连线为:
如图,由于两个图象有两个交点,所以在整个行驶过程中两车相遇次数为2.
科目:初中数学 来源: 题型:
【题目】配餐公司为某学校提供 A、B、C 三类午餐供师生选择,三类午餐每 份的价格分别是:A 餐 6 元,B 餐 8 元,C 餐 12 元.为做好下阶段的营销工作,配餐 公司根据该校上周 A、B、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如 下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).
请根据以上信息,解答下列问题:
(1)配餐公司上周在该校销售 B 餐每份的利润大约是 元;
(2)请你计算配餐公司上周在该校销售午餐约盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知EC∥AB,∠EDA=∠ABF.
(1)求证:四边形ABCD是平行四边形;
(2)图中存在几对相似三角形?分别是什么?请直接写出来不必证明;
(3)求证:OA2=OEOF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.
(1)求证:△ABF∽△DFE;
(2)如果AB=12,BC=15,求tan∠FBE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数和中位数;
(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)
(1)当k=时,将这个二次函数的解析式写成顶点式;
(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:小刚站在河边的点处,在河的对面(小刚的正北方向)的处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树处,接着再向前走了30步到达处,然后他左转直行,当小刚看到电线塔、树与自己现处的位置在一条直线时,他共走了140步.
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点处时他与电线塔的距离,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com