精英家教网 > 初中数学 > 题目详情
19.阅读材料,大数学家高斯在上学时研究过这样一个问题,1+2+3+…+10=?经过研究这个问题,这个问题的一般性结论是1+2+3+…+n=$\frac{1}{2}$n(n+1)其中n是正整数,现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?,观察下面三个特殊的等式:
1×2=$\frac{1}{3}$(1×2×3-0×1×2)
2×3=$\frac{1}{3}$(2×3×4-1×2×3)
3×4=$\frac{1}{3}$(3×4×5-2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=$\frac{1}{3}$×3×4×5=20
读完这段材料请你计算:
(1)1×2+2×3+…+100×101
(2)$\frac{1×2×3+2×3×4+…+2009×2010×2011}{2009×2010×2011}\end{array}$
(3)1×2×3×4+2×3×4×5+…+n(n+1)(n+2)(n+3)

分析 (1)根据三个特殊等式相加的结果,得到规律,进行计算即可求解;
(2)先对特殊等式进行整理,从而找出规律,代入计算即可得解;
(3)先对特殊等式进行整理,从而找出规律,然后把每一个算式都写成两个算式的运算形式,整理即可得解.

解答 解:(1)∵1×2+2×3+3×4=$\frac{1}{3}$×3×4×5=20,
∴1×2+2×3+…+100×101=$\frac{1}{3}$×100×101×102=343400;

(2)根据(1)的计算方法,1×2×3=$\frac{1}{4}$(1×2×3×4-0×1×2×3),
2×3×4=$\frac{1}{4}$(2×3×4×5-1×2×3×4),

n(n+1)(n+2)=$\frac{1}{4}$[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=$\frac{1}{4}$(1×2×3×4-0×1×2×3+2×3×4×5-1×2×3×4+…+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)],
=$\frac{1}{4}$n(n+1)(n+2)(n+3).
∴1×2×3+2×3×4+…+2009×2010×2011=$\frac{1}{4}$×2009×2110×2011×2012,
∴$\frac{1×2×3+2×3×4+…+2009×2010×2011}{2009×2010×2011}\end{array}$
=$\frac{\frac{1}{4}(2009×2010×2011×2012)}{2009×2010×2011}$
=$\frac{1}{4}$×2012
=53;
(3)∵1×2×3×4=$\frac{1}{5}$(1×2×3×4×5-0×1×2×3×4),
2×3×4×5=$\frac{1}{5}$(2×3×4×5×6-1×2×3×4×5),
3×4×5×6=$\frac{1}{5}$(3×4×5×6×7-2×3×4×5×6),

n(n+1)(n+2)(n+3)=$\frac{1}{5}$[n(n+1)(n+2)(n+3)(n+4)-(n-1)n(n+1)(n+2)(n+3)],
∴1×2×3×4+2×3×4×5+…+n(n+1)(n+2)(n+3)=$\frac{1}{5}$[1×2×3×4×5-0×1×2×3×4+2×3×4×5×6-1×2×3×4×5+3×4×5×6×7-2×3×4×5×6+…+n(n+1)(n+2)(n+3)(n+4)-(n-1)n(n+1)(n+2)(n+3)],
=$\frac{1}{5}$n(n+1)(n+2)(n+3)(n+4).

点评 考查了有理数的混合运算,能从材料中获取所需的信息和解题方法是需要掌握的基本能力.要注意:连续的整数相乘的进一步变形,即n(n+1)=$\frac{1}{3}$[n(n+2)-n(n+1)(n-1)];n(n+1)(n+2)=$\frac{1}{4}$[n(n+1)(n+2)(n+3)-n(n-1)(n+1)(n+2)].

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知线段CD,延长CD到B,使DB=2CD,反向延长CD到A,使CA=CB,若CD=2cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解下列方程:
(1)1-2(2x+3)=-3(2x+1);          
(2)$\frac{7x-1}{3}-\frac{5x+1}{2}=2-\frac{3x+2}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.化简分式$\frac{abx+aby}{{{x^2}-{y^2}}}$得$\frac{ab}{x-y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形.其中,正确的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若$\frac{a}{b}=\frac{2}{5}$,则$\frac{2a+b}{b}$=$\frac{9}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.化简求值
①(4a-5b)-2(a-b),其中a=-2,b=-1
②8m2+[4m2-m-(2m2-7m)],其中m=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.矩形具有而菱形不一定具有的性质是(  )
A.对角线互相平分B.对角相等C.对角线互相垂直D.4个内角都相等

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.利用一面墙(墙的长度为20m),另三边用48m长的篱笆围成一个矩形场地.
(1)若场地的面积为160m2,求矩形场地的长和宽;
(2)场地的面积能否达到300m2?若能,请求出矩形场地的长和宽;若不能,请说明理由.

查看答案和解析>>

同步练习册答案