精英家教网 > 初中数学 > 题目详情

【题目】如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1

(1)直接写出点D1的坐标________,点D旋转到点D1所经过的路线长_______

(2)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角________,则它所对应的正弦函数值是_________

(3)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若点D2(4,5),画出平移后的图形.

【答案】(3,-1) ∠ACD

【解析】

解:(1)如图:点D的坐标为(-31),

将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1

D1的坐标为:(3-l),

由勾股定理得:OD=

D旋转到点D1所经过的路线长=π

2∠ACD(∠DAC)3)正确图形如图所示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,为等边三角形,点DE分别在BCAC上,AE=CDADBE于点PQ.

1)求证:

2)若,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档CD与AD的长分别为60cm,75cm,且AC⊥CD,垂足为C,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.

(1)求车架档AC的长;

(2)求车座点E到车架档AB的距离.

(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD中,CD=2AD,BEAD于点E,FDC的中点,连结EF、BF,下列结论:①∠ABC=2ABF;EF=BF;S四边形DEBC=2SEFB④∠CFE=3DEF,其中正确结论的个数共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某公司有三个住宅区,ABC各区分别住有职工30人,15人,10人,且这三点在一条大道上(ABC三点共线),已知AB100米,BC200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在(  )

A. AB. BC. AB之间D. BC之间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):

次数,1, 2, 3, 4, 5, 6

甲:79,78,84,81,83,75

乙:83,77,80,85,80,75

利用表中数据,解答下列问题:

(1)计算甲、乙测验成绩的平均数.

(2)写出甲、乙测验成绩的中位数.

(3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)

(4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB12BC16,将矩形ABCD沿EF折叠,使点B与点D重合,则折痕EF的长为(  )

A.14B.C.D.15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.

(1)直接写出k的值及点E的坐标;

(2)若点F是OC边上一点,且FB⊥DE,求直线FB的解析式.

查看答案和解析>>

同步练习册答案