【题目】如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【答案】解:(1)
(2)存在P1(-1, )、P2(1,6),P3(1, )
(3)连OE设四边形BOCE的面积为S,点E的坐标为()
∵E在第二象限
∴3<x<0 -x2-2x+3>0
∵S=S△BOE+S△COE=+×3×(-×)
=
∵-3<x<0
∴当x=-时,S最大为
此时,E()
【解析】试题分析:(1)利用待定系数法求函数解析式即可;(2)分CP=MP、CM=CP、CM=MP三种情况讨论,(3)过点E作EF⊥x轴于点F,设E(a,--2a+3)(-3<a<0),然后用a表示出四边形BOCE面积,然后利用二次函数的性质确定最大值即可得到点E坐标.
试题解析:解︰(1)由题知︰,解得︰
∴所求抛物线解析式为︰
(2)存在符合条件的点P,
其坐标为P(-1,)或P(-1,-)或P(-1,6)或P(-1,)
(3)解法①:
过点E作EF⊥x轴于点F,设E(a,--2a+3)(-3<a<0)
∴EF=--2a+3,BF=a+3,OF=-a
∴S四边形BOCE=BF·EF+(OC+EF)·OF
=(a+3)·(--2a+3)+(--2a+6)·(-a)
==-+
∴当a=-时,S四边形BOCE最大,且最大值为.
此时,点E坐标为(-,)
解法②:
过点E作EF⊥x轴于点F,设E(x,y)(-3<x<0)
则S四边形BOCE=(3+y)·(-x)+(3+x)·y
=(y-x)=()=-+
∴当x=-时,S四边形BOCE最大,且最大值为.此时,点E坐标为(-,)
科目:初中数学 来源: 题型:
【题目】某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.
(1)设商场每件商品降价x元,利润为y元,写出y与x的函数关系式。
(2)当该商品的销售价为多少元时,所获利润最大?最大利润是多少?
(3)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在1、2、3、4、5这五个数中,先任意取一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b).求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线y=﹣ x+b过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF、OE,探究∠AOF与∠EOC的数量关系,并证明;
(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ是以PQ为斜边的等腰直角三角形,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某饭店在2014年春节年夜饭的预定工作中,第一天预定了a桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了 桌年夜饭(用含a的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com