精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB30,∠AOB 内有一定点 P,且 OP12,在 OA 上有一动点 QOB 上有 一动点 R。若PQR 周长最小,则最小周长是( )

A. 6 B. 12 C. 16 D. 20

【答案】B

【解析】

作点P 关于OA的对称点点E,点P关于OB的对称点点F,连接EF分别交OA于点Q,交OB于点R,连=OEOF

PE关于OA对称,∴OE=OP=12,EOA=AOPQE=QP

同理可证OP=OF=12,BOP=BOFRP=RF

OE=OF=12,EOF=EOP+FOP=2AOB=60°,

∴△OEF是等边三角形,

EF=12,

CPQR=PQ+PR+QR=EQ+QR+RF=EF=12.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,点D,E,F分别在BC,AB,AC边上.

(1)当点D,E,F分别为BC,AB,AC边的中点时,求证:△BED≌△DFC;
(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.

(1)若点O在四边形ABCD的内部,

①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE= °;

②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.

(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的函数图象反映的过程是:李大爷每天早上都到公园锻炼,他从家去公园锻炼一会儿,又去了菜市场后马上回家,其中表示时间,表示李大爷离他家的距离。

(1)李大爷家到公园的距离是多少千米,他在公园银炼了多少小时;

(2)李大爷从菜市场回家的平均速度;

(3)李大爷从家到菜市场的平均速度。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )

A.30°
B.45°
C.60°
D.40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)

某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440.

1)该校初三年级共有多少人参加春游?

2)请你帮该校设计一种最省钱的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A '处,点B落在点B '处,若∠1=115° ,则图中∠2的度数为(

A. 40°B. 45°C. 50°D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC△DBE均为等腰直角三角形.

(1)求证:AD=CE;

(2)求证:ADCE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,设运动时间为x(秒),△PBQ的面只为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围.
(2)求△PBQ的面积的最大值.

查看答案和解析>>

同步练习册答案