【题目】如图1,已知中,,,,为斜边上一个动点,作,交直角边于点,以为直径作,交于点,连接,交于点.连结,设.
(1)用含的代数式表示的长;
(2)求证:;
(3)如图2,当与边相切时,求的直径;
(4)若以为顶点的三角形是等腰三角形时,求所有满足条件的的值.
【答案】(1),;(2)见解析;(3);(4)或或.
【解析】
(1)利用,即可得出结论;
(2)利用同弧所对的圆周角相等得出,利用同角的余角相等得出,从而得出结论;
(3)作,,则,,利用得出,进而得出直径;
(4)分、、三种情况讨论即可.
(1)解:在中,由勾股定理得:,
∵,∴,
在和中
∵,
∴,
∴,即
解得:,
∴,,
(2)证明:∵
∴.
又∵.
∴.
解:(3)作,,垂足分别为,
∵与相切,∴,
∵,
∴,
∴ ∴
∴的直径为;
(4)若以为顶点的三角形是等腰三角形,则可分为三种情况:
①当时,
∵,∴,∴,即
∵,∴,
在和中,
,
∴
∴,
∴
∴;
②当时,
∵为直径,∴,即,
∵,,
∴,
∴,即,
∴,,
∴,
∵,∴,
∵四边形内接于,
∴,
∴,
在和中,
∵,
∴,
∴,即,
解得:,
经检验:是原方程的解,
∴;
③当时,
∵,∴,
∵四边形内接于,
∴,,即
∴,
在和中,
∵,
∴,
∴,
∴,
∴;
综上所述:当或或时,以为顶点的三角形是等腰三角形.
科目:初中数学 来源: 题型:
【题目】某课外活动小组为了解本校学生上学常用的一种交通方式,随机调查了本校部分学生,根据调查结果,统计整理并制作了如下尚不完整的统计图表:请根据以上信息解答下列问题:
(1)参与本次调查的学生共有 人;
(2)统计表中,m= ,n= ;扇形统计图中,B组所对应的圆心角的度数为 ;
(3)若该校共有1500名学生,请估计全校骑自行车上学的学生人数;
(4)该小组据此次调查结果向学校建议扩建学生车棚,若平均每4平方米能停放5辆自行车,请估计在现有300平方米车棚的基础上,至少还需要扩建多少平方米才能满足学生停车需求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB =AC,点D在BC上,点F在BA的延长线上,FD =FC,点E是AC与DF的交点,且ED =EF,FG∥BC交CA的延长线于点G.
(1)∠BFD =∠GCF 吗?说明理由;
(2)求证:△GEF ≌△CED;
(3)求证:BD =DC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,点从点出发,以每秒1个单位长度的速度沿向点运动,过点作交的直角边于点,以为边向右侧作正方形.设点的运动时间为秒,正方形与的重叠部分的面积为.
(1)用含的代数式表示线段的长;
(2)求与的函数关系式,并直接写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(-4,3),B(0,1),将线段AB沿轴的正方向平移个单位,得到线段A′B′,且A′,B′恰好都落在反比例函数的图象上.
(1)用含的代数式表示点A′,B′的坐标;
(2)求的值和反比例函数的表达式;
(3)点为反比例函数图象上的一个动点,直线与轴交于点,若,请直接写出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出:
(1)如图①在中,是边的高,点是上任意一点,若则的最小值为_ ;
(2)如图②,在等腰中,是的垂直平分线,分别交于点,,求的周长;
问题解决:
(3)如图③,某公园管理员拟在园内规划一个区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路和,满足点到的距离为.为了节约成本,要使得之和最短,试求的最小值(路宽忽略不计).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com