【题目】某校为了解初中学生每天在校体育活动的时间(单位:),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为 ,图1中的值为 ;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有1200名初中学生,估计该校每天在校体育活动时间大于的学生人数.
【答案】(Ⅰ)40;25(Ⅱ)平均数是1.5;众数是1.5;中位数是1.5(Ⅲ) 1080人
【解析】
(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;
(Ⅱ)根据平均数和众数、中位数即可求解;
(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h的学生人数.
(Ⅰ)本次接受调查的初中学生人数为:4÷10%=40,
m%==25%,
故答案为:40,25.
(Ⅱ)平均数==1.5
由条形统计图得,4个0.9,8个1.2,15个1.5,10个1.8,3个2.1,
∴1.5出现的次数最多,15次,
∴众数是1.5,
第20个数和第21个数都是1.5,
∴中位数是1.5;
(Ⅲ)1200×=1080(人),
答:该校每天在校体育活动时间大于1h的学生有1080人.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,0)旋转180°,所得的图象经过(0.﹣1),则m的值为( )
A.﹣2B.﹣1C.1D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2=(c≠0)的图象相交于点B(3,2)、C(﹣1,n).
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出y1>y2时x的取值范围;
(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司推出一款新产品,通过市场调研后,按三种颜色受欢迎的程度分别对A颜色、B颜色、C颜色的产品在成本的基础上分别加价40%,50%,60%出售(三种颜色产品的成本一样),经过一个季度的经营后,发现C颜色产品的销量占总销量的40%,三种颜色产品的总利润率为51.5%,第二个季度,公司决定对A产品进行升级,升级后A产品的成本提高了25%,其销量提高了60%,利润率为原来的两倍;B产品的销量提高到与升级后的A产品的销量一样,C产品的销量比第一季度提高了50%,则第二个季度的总利润率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,一次函数
与
轴、
轴交于点
、
两点,
轴的负半轴上一点
,
轴的正半轴上有一点
且
(1)如图1,在直线上有一长为
的线段
(点
始终在点
的左侧),将线段
沿直线
平移得到线段
,使得四边形
的周长最小,请求出四边形
周长的最小值和此时点
的坐标.
(2)如图2,过作直线
交直线
与
点,将直线
沿直线
平移,平移后与直线
、
的交点分别是
,
.请问,在直线
上是否存在一点
,使
是等腰三角形?若存在,求出此时符合条件的所有
点所对应的
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省温州市)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数(k≠0)的图象恰好经过点A′,B,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,直线CE与半圆O相切于点C,点D是的中点,CB=6,四边形ABCD的面积为
AC,则圆心O到直线CE的距离是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com