精英家教网 > 初中数学 > 题目详情
如图,AB是半圆O的直径,点C在半圆O上,过点O作OD∥BC交圆的切线AD于点D,交弦AC于E,交半圆于点F.
(1)求证:点E为线段AC的中点;
(2)求证:∠ACO=∠ODA;
(3)若DF=2EF=
2
3
3
,求AB的长.
考点:切线的性质
专题:证明题
分析:(1)根据圆周角定理,由AB是半圆O的直径得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,即OE⊥AC,然后根据垂径定理即可得到AE=CE;
(2)根据切线的性质,由AD为⊙O的切线得到∠OAD=90°,即∠OAE+∠DAE=90°,利用等角的余角相等得∠ADO=∠EAO,加上∠ACO=∠EAO,所以∠ACO=∠ODA;
(3)设⊙O的半径为r,利用DF=2EF=
2
3
3
,可表示出OE=OF-EF=r-
3
3
,OD=OF+DF=r+
2
3
3
,再证明△OEA∽△OAD,利用相似比得到r:(r-
3
3
)=(r+
2
3
3
):r,然后解方程求出r,从而得到直径AB的长.
解答:(1)证明:∵AB是半圆O的直径,
∴∠ACB=90°,
∵OD∥BC,
∴∠AEO=90°,
∴OE⊥AC,
∴AE=CE,
即点E为线段AC的中点;
(2)证明:∵AD为⊙O的切线,
∴OA⊥AD,
∴∠OAD=90°,即∠OAE+∠DAE=90°,
而∠DAE+∠ADE=90°,
∴∠ADO=∠EAO,
∵OC=OA,
∴∠ACO=∠EAO,
∴∠ACO=∠ODA;
(3)解:设⊙O的半径为r,
∵DF=2EF=
2
3
3

∴OE=OF-EF=r-
3
3
,OD=OF+DF=r+
2
3
3

∵∠AOE=∠DOA,
∴△OEA∽△OAD,
∴OA:OE=OF:OA,即r:(r-
3
3
)=(r+
2
3
3
):r,
∴r=
2
3
3

∴AB=2r=
4
3
3
点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,若点P是线段MN的中点,则MN=
 
PM.PN=
 
MN,MP
 
PN,若MP=NP,则点P是线段MN的
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(3+1)(32+1)(34+1)(38+1)(316+1).

查看答案和解析>>

科目:初中数学 来源: 题型:

如果b-a=2,c-d=3,求a2-ab+b2-bc+c2-ca的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,O为BC上一点,⊙O过A、C两点交BC于点D,BA为⊙O的切线.
(1)如图1,若AD=1,AC=2,求sin∠BAD的值;
(2)如图2,过B作BE⊥BC交CA的延长线于E,若AC:AE=2:3,求tan∠ABD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形ABCD中,AB=6,BC=8,先将矩形沿对角线折叠,再将矩形沿AE对折,使点B落在AC边的点F处,求折痕AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,AE∥BC,AD、BD分别平分∠EAB、∠CBA,EC过点D.求证:AB=AE+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A的坐标为(3,4),O为原点,连结OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为(  )
A、(-3,4)
B、(3,-4)
C、(-4,3)
D、(4,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品若每件按标价的六折出售将亏110元,而按标价的八折出售每件能赚70元,求该商品的进价和标价?

查看答案和解析>>

同步练习册答案