精英家教网 > 初中数学 > 题目详情

【题目】为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:

社团类别

人数

占总人数比例

球类

60

m

舞蹈

30

0.25

健美操

n

0.15

武术

12

0.1

1)求样本容量及表格中mn的值;

2)请补全统计图;

3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.

【答案】1120,0.5,18;(2)答案见解析;(375.

【解析】

1)根据喜欢武术的有12人,所占的比例是0.1,即可求得总数;

2)根据(1)的结果,即可补全统计图;
3)利用总人数3000乘以对应的比例,即可估计该校最喜欢足球的人数.

1)样本容量为:12÷0.1120

m60÷1200.5n120×0.1518

2)如图所示:

3)学校喜欢球类人有:3000×0.5×75(人).

答:估计该校最喜欢足球的人数为75

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】公司有345台电脑需要一次性运送到某学校,计划租用甲、乙两种货车共8辆已知每辆甲种货车一次最多运送电脑45台、租车费用为400元,每辆乙种货车一次最多运送电脑30台、租车费用为280

(Ⅰ)设租用甲种货车辆(为非负整数),试填写下表.

表一:

租用甲种货车的数量/辆

3

7

租用的甲种货车最多运送电脑的数量/台

135

租用的乙种货车最多运送电脑的数量/台

150

表二:

租用甲种货车的数量/辆

3

7

租用甲种货车的费用/元

2800

租用乙种货车的费用/元

280

(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的工兵连长地雷比较大小,共有6个棋子,分别为1工兵2连长3地雷游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②工兵地雷地雷连长连长工兵;③相同棋子不分胜负.

1)若小方先摸,则小方摸到排长的事件是 ;若小方先摸到了连长,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为

2)如果先拿走一个连长,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某教学活动小组选定测量小山上方某信号塔PQ的高度,他们在A处测得信号塔顶端P的仰角为45°,信号塔低端Q的仰角为31°,沿水平地面向前走100米到处,测得信号塔顶端P的仰角为68°.求信号塔PQ的高度.(结果精确到0.1米.参考数据:sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知点A(﹣30),B04),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为(  )

A. 80760B. 80640C. 8076D. 8064

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABDCABAD,对角线ACBD交于点OAC平分BAD,过点CCEABAB的延长线于点E,连接OE

(1)求证:四边形ABCD是菱形;

(2)若ABBD=2,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:

(1)本次一共调查了多少名购买者?

(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为   度.

(3)若该超市这一周内有1600名购买者,请你估计使用AB两种支付方式的购买者共有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.

1求△AOB的周长;

2设AQ=t>0,试用含t的代数式表示点P的坐标;

3当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:

①6a+3b+2c=0;

②当m≤x≤m+2时,函数y的最大值等于,求二次项系数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙OAB于点DE的中点.

1)求证:∠ACD=∠DEC;(2)延长DECB交于点P,若PB=BODE=2,求PE的长

查看答案和解析>>

同步练习册答案