【题目】在“十一”黄金周期间,某商店购进一优质湖产品,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该湖产品一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价(x)(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)填空:若这种湖产品的售价为30元/千克,则该湖产品的销售量是 .
(2)如果某天销售这种湖产品获利150元,那么该天湖产品的售价为多少元?
【答案】(1)20;(2)25元.
【解析】
(1)根据表格中的数据,利用待定系数法可求出y与x之间的函数关系式,再利用一次函数图象上点的坐标特征,即可求出当售价为30元/千克时该湖产品的销售量;
(2)根据总利润=每千克的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再由20≤x≤32,即可确定x的值,此题得解.
(1)设y与x之间的函数关系式为y=kx+b(k≠0),
将(24,32),(26,28)代入y=kx+b,得:
,解得:
∴y与x之间的函数关系式为y=﹣2x+80.
当x=30时,y=﹣2×30+80=20.
故答案为:20.
(2)根据题意得:(x﹣20)(﹣2x+80)=150,
解得:x1=25,x2=35.
∵20≤x≤32,
∴x=25.
答:如果某天销售这种湖产品获利150元,那么该天湖产品的售价为25元.
科目:初中数学 来源: 题型:
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:矩形ABCD中AB=2,BC= ,⊙A是以A为圆心,半径r=1的圆,若⊙A绕着点B顺时针旋转,旋转角为α( 0°<α<180°);当旋转后的圆与矩形ABCD的边相切时,α=________度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.
(1)求点D的坐标;
(2)求证:△ADE≌△BCD;
(3)抛物线y=x2﹣x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,以AB为直径作⊙O交BC于点D,E为AC的中点,连接DE并延长交BA的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若∠F=30°,⊙O的半径为2,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是弧的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.
⑴求证:AC=CD.
⑵若OB=2,求BH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com