【题目】如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC.
(1)求证:AB=AP;
(2)若AB=10,DP=2,
①求线段CP的长;
②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.
【答案】(1)见解析;(2)①PC=;②S△ADF=.
【解析】
(1)利用等角对等边证明即可;
(2)①利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题;
②作FH⊥AD于H,首先利用相似三角形的性质求出AE,DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.
(1)证明:∵=,
∴∠BAC=∠CAP,
∵AB是直径,
∴∠ACB=∠ACP=90°,
∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,
∴∠ABC=∠P,
∴AB=AP.
(2)
①解:连接BD.
∵AB是直径,
∴∠ADB=∠BDP=90°,
∵AB=AP=10,DP=2,
∴AD=10﹣2=8,
∴BD===6,
∴PB===2,
∵AB=AP,AC⊥BP,
∴BC=PC=PB=,
∴PC=.
②解:作FH⊥AD于H.
∵DE⊥AB,
∴∠AED=∠ADB=90°,
∵∠DAE=∠BAD,
∴△ADE∽△ABD,
∴==,
∴==,
∴AE=,DE=,
∵∠FEA=∠FEH,FE⊥AE,FH⊥AH,
∴FH=FE,∠AEF=∠AHF=90°,
∵AF=AF,
∴Rt△AFE≌Rt△AFH(HL),
∴AH=AE=,DH=AD﹣AH=,设FH=EF=x,
在Rt△FHD中,则有(﹣x)2=x2+()2,
解得x=,
∴S△ADF=ADFH=×8×=.
故答案为①PC=;②S△ADF=.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=,E是AD边上的一点(点E与点A和点D不重合),BE的垂直平分线交AB于点M,交DC于点N.
(1)证明:MN = BE.
(2)设AE=,四边形ADNM的面积为S,写出S关于的函数关系式.
(3)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(x1,y1)、B(x2,y2)在二次函数y=x2+mx+n的图像上,当x1=1、x2=3时,y1=y2.
(1)若P(a,b1),Q(3,b2)是函数图象上的两点,b1>b2,则实数a的取值范围是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若抛物线与x轴只有一个公共点,求二次函数的表达式.
(3)若对于任意实数x1、x2都有y1+y2≥2,则n的范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形ABC的圆心角为90°,半径为6,将扇形ABC绕A点逆时针旋转得到扇形ADE,点B、C的对应点分别为点D、E,若点D刚好落在上,则阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年我县为了创建省级文明县城,全面推行中小学校“社会主义核心价值观”进课堂.某校对全校学生进行了检测评价,检测结果分为(优秀)、(良好)、(合格)、(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.
请根据统计表和统计图提供的信息,解答下列问题:
(1)本次随机抽取的样本容量为__________;
(2)统计表中_________,_________.
(3)若该校共有学生5000人,请你估算该校学生在本次检测中达到“(优秀)”等级的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在纸片中, ,学习小组进行如下操作:、如图2,沿折叠使点落在延长线上的点处,点是.上一点,如图3,将图2展平后,再沿折叠使点落在点处,点分别在边和上,将图3展平得到图4,连接,请在图4中解决下列问题:
(1)判断四边形的形状, 并证明你的结论;
(2)若,求四边形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于点、,顶点为M.
(1)求抛物线的解析式和点M的坐标;
(2)点E是抛物线段BC上的一个动点,设的面积为S,求出S的最大值,并求出此时点E的坐标;
(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD= AM2.
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com