【题目】已知函数y=﹣(x>0)与y=(x<0)的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论为___.
【答案】②③④.
【解析】
①错误.根据x1<x2<0时,函数y随x的增大而减小可得;
②正确.求出A、B两点坐标即可解决问题;
③正确.设P(0,m),则B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;
④正确.设P(0,m),则B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PBPA,列出方程即可解决问题.
解:①错误.∵x1<x2<0,函数y随x是增大而减小,
∴y1>y2,故①错误.
②正确.∵P(0,﹣3),
∴B(﹣1,﹣3),A(4,﹣3),
∴AB=5,OA==5,
∴AB=AO,
∴△AOB是等腰三角形,故②正确.
③正确.设P(0,m),则B(,m),A(﹣,m),
∴PB=﹣,PA=﹣,
∴PA=4PB,
∵SAOB=S△OPB+S△OPA=+=7.5,故③正确.
④正确.设P(0,m),则B(,m),A(﹣,m),
∴PB=﹣,PA=﹣,OP=﹣m,
∵∠AOB=90°,∠OPB=∠OPA=90°,
∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,
∴∠BOP=∠OAP,
∴△OPB∽△APO,
∴=,
∴OP2=PBPA,
∴m2=﹣(﹣),
∴m4=36,
∵m<0,
∴m=﹣,
∴A(2,﹣),故④正确.
∴②③④正确,
故答案为:②③④.
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.
(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;
(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;
(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求PAC为直角三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图为某小区的两幢1O层住宅楼,由地面向上依次为第1层、第2层、…、第10层,每层的高度为3m,两楼间的距离AC=30m.现需了解在某一时段内,甲楼对乙楼的采光的影响情况.假设某一时刻甲楼楼顶B落在乙楼的影子长EC=h,太阳光线与水平线的夹角为α.
(1)用含α的式子表示h;
(2)当α=30°时,甲楼楼顶B的影子落在乙楼的第几层?从此时算起,若α每小时增加10°,几小时后,甲楼的影子刚好不影响乙楼采光.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料,回答问题:
解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设,那么,于是原方程可变为①,解得,.
当时,,∴
当时,,∴
∴原方程有四个根:,,,.
(1)在由原方程得到方程①的过程中,利用________法达到________的目的,体现了数学的转化思想.
(2)解方程.
(3)已知非零实数a,b满足,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.
(1)求反比例函数的解析式;
(2)连接OE、OF,求△OEF的面积;
(3)在第一象限内,请直接写出关于x的不等式kx+b≤的解集: .
(4)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求HN+ON的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校落实新课改精神的情況,现以该校某班的同学参加课外活动的情况为样本,对其参加“球类”“绘画类”“舞蹈类”“音乐类”“棋类”活动的情况进行调査统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 ;
(2)请把条形统计图补充完整;
(3)若该校学生共1600人,那么参棋类活动的大约有多少人?
(4)该班参加舞蹈类活动4位同学中,有1位男生(用E表示)和3位女生(分别F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状的方法求恰好选中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ABCD 是边长为 2,一个锐角等于 60°的菱形纸片,将一个∠EDF=60°的三角形纸片的一个顶点与该菱形顶点 D 重合,按顺时针方向旋转这个三角形纸片,使它的两边分别交 CB,BA(或它们的延长线)于点 E, F;
①当 CE=AF 时,如图①,DE 与 DF 的数量关系是 ;
②继续旋转三角形纸片,当 CE≠AF 时,如图②,(1)的结论是否成立?若成立,加以证明;若不成立,请说明理由;
③再次旋转三角形纸片,当点 E,F 分别在 CB,BA 的延长线上时,如图③, 请直接写出 DE 与 DF 的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com