精英家教网 > 初中数学 > 题目详情

【题目】如图,已知D为△ABCBC边的中点,DE、DF分别平分∠ADB和∠ADC,

求证:BE+CF>EF.

【答案】证明见解析.

【解析】

试题分析: DA 上取一点 M ,使 DM=DB=DC ,连结 EM 、 MF ,实质上是将DBE DFC 分别沿 DE 、 DF 翻折 180° 得到DEM MFD ,从而使问题得到解决的 .

试题解析: DA 上取一点 M ,使 DM=DB=DC ,连结 EM 、 MF ,

DE 平分∠ADB ,

BDE= EDM.

又∵ DM=BD , DE=DE ,

BED ≌△MED.

同理可得△MFD ≌△CFD.

BE=EM , CF=MF.

在△EMF 中, EM+MF>EF.

BE+CF>EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两同学在一次百米赛跑中,路程S(米)与时间t(秒)之间的关系如图所示.根据图象回答下列问题:

(1)3.8秒时,哪位同学处于领先位置?

(2)在这次赛跑中,哪位同学先到达终点?比另一个同学早多少时间到达?约几秒后哪位同学被哪位同学追上?

(3)甲同学所走的路程S(米)与时间t(秒)之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=ACDAC的中点,ABD的周长比BDC的周长大2,且BC的边长是方程的解,求ABC三边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC三个顶点都在格点上,点ABC的坐标分别为A﹣41),B﹣11),C﹣13)请解答下列问题:

1)画出ABC关于原点O的中心对称图形A1B1C1,并写出点C的对应点C1的坐标;

2)画出ABC绕原点O逆时针旋转90°后得到的A2B2C2,并直接写出点A旋转至A2经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,4).

(1)求此抛物线的解析式;

(2)设点P(2,n)在此抛物线上,APy轴于点E,连接BE,BP,请判断BEP的形状,并说明理由;

(3)设抛物线的对称轴交x轴于点D,在线段BC上是否存在点Q,使得DBQ成为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).

(1)求此一次函数的解析式;

(2)求此一次函数的图象与x轴、y轴的交点坐标;

(3)求此一次函数的图象与两坐标轴所围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示在直角梯形ABCDABC=90°,ADBC,AB=BC,EAB的中点,CEBD

(1)求证:BE=AD;

(2)求证:AC是线段ED的垂直平分线

(3)DBC是等腰三角形吗?并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D04),B60).若反比例函数y=x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b

1)求反比例函数和直线EF的解析式;

2)求OEF的面积;

3)请结合图象直接写出不等式k2x+b0的解集.

查看答案和解析>>

同步练习册答案