【题目】已知,如图,在ABCD中,延长AB到点E,延长CD到点F,使得BE=DF,连接EF,分别交BC,AD于点M,N,连接AM,CN.
(1)求证:△BEM≌△DFN;
(2)求证:四边形AMCN是平行四边形.
【答案】(1)证明见解析;(2)证明见解析
【解析】
(1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;
(2)根据全等求出DN=BM,求出AN=CM,根据平行四边形的判定得出即可.
解:(1)∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AB∥CD,
∴∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,
∴∠ADF=∠EBC,
在△DFN和△BEM中
∴△DFN≌△BEM(ASA);
(2)四边形ANCM是平行四边形,理由是:
∵由(1)知△DFN≌△BEM,
∴DN=BM,
∵四边形ABCD是平行四边形,
∴AD=BC,且AD∥BC,
∴AD﹣DN=BC﹣BM,
∴AN=CM,AN∥CM,
∴四边形ANCM是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH上一点,已知∠1+∠3=180°,
(1)求证:∠CEF=∠EAD;
(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:
(1)小丽买了自动铅笔、记号笔各几支?
(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题背景)
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 .
(探索延伸)
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
(学以致用)
如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的图形,并且O的对应点O′的坐标为(4,3).
(1)求三角形ABO的面积;
(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′ 、B′ ;
(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 ,,放入一个大球水面升高 ;
(2)如果要使水面上升到50,应放入大球、小球各多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式.
解∵,∴可化为.
由有理数的乘法法则:两数相乘,同号得正,得:①②
解不等式组①,得,解不等式组②,得
∴的解集为或.
即一元二次不等式的解集为或.
(1)一元二次不等式的解集为____________;
(2)试解一元二次不等式;
(3)试解不等式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).
(1)AB的长等于 ;
(2)画出△ABC向下平移5个单位后得到△A1B1C1,并写出此时点A1的坐标;
(3)画出△ABC绕原点O旋转180后得到的△A2B2C2,并写出此时点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是 .
(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com