精英家教网 > 初中数学 > 题目详情
如图所示,AB、CD相交于点O,已知OA=OB,请补充一个条件使得△AOD≌△BOC,你补充的条件是
 
考点:全等三角形的判定
专题:开放型
分析:补充条件DO=CO,再由OA=OB和对顶角∠AOD=∠BOC可利用SAS定理证明△AOD≌△BOC.
解答:解:补充条件DO=CO,
∵在△AOD和△BOC中
AO=BO
∠AOD=∠BOC
DO=CO

∴△AOD≌△BOC(SAS),
故答案为:DO=CO.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

解方程:|2x-1|+|x-2|=4.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二元一次方程2x+3y+6=0,用x的代数式表示y,并把y看作是x的函数.画出它的图象,根据图象回答:
(1)当x=-6时,y的值;
(2)当y=4时,x的值;
(3)当y=0时,对应的x的值是什么?它是哪一个一元方程的解?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,l是线段AB的垂直平分线,点P在l上,则PA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知3是关于x的方程
4
3
x2-2a+1=0的一个解,则2a的值是(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,DC∥AB,AD⊥CD于D.若△ABC的周长为12cm,则CD=
 
 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

-(-25)+(-18)-(-30)+(-26)-4.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.
(1)求∠ADE的度数;
(2)若点M在DE上,且DM=DA,求证:ME=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

规定图形表示运算a-b+c,图形表示运算x+z-y-w.则=
 
(直接写出答案).

查看答案和解析>>

同步练习册答案