精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,AD垂直BC于点D,且AD=BCBC上方有一动点P满足,则点PBC两点距离之和最小时,∠PBC的度数为(

A.30°B.45°C.60°D.90°

【答案】B

【解析】

根据得出点PBC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点PBC两点距离之和最小,作出点C关于直线l的对称点C,连接BC,然后根据条件证明BCC是等腰直角三角形即可得出∠PBC的度数.

解:∵

∴点PBC的距离=AD

∴点P在过AD的中点E且平行于BC的直线l上,

C点关于直线l的对称点C,连接BC,交直线l于点P

则点P即为到BC两点距离之和最小的点,

ADBCEAD的中点,lBC,点C和点C关于直线l对称,

CC’=AD=BCCCBC

∴三角形BCC是等腰直角三角形,

∴∠PBC=45°.

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,AB=AC,以AC为直径作⊙OBC于点D,过点D作⊙O的切线交AB于点E,交AC的延长线于点F

1)求证:DEAB

2tanBDE=, CF=3,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,的平分线交于点,过点于点,交于点,那么下列结论:

是等腰三角形;②

③若;④

其中正确的有(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线,直线分别与相交于点,小宇同学利用尺规按以下步骤作图:①以点为圆心,以任意长为半径作弧交于点,交于点②分别以为圆心,以大于,长为半径作弧,两弧在内交于点;③作射线于点,若,则____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高AB.

(结果精确到1m,参考数据:1.4,1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文化,源远流长,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为四大古典名著.某校要求没有读过四大名著的学生进行选读,将《西游记》、《三国演义》、《水浒传》《红楼梦》依次记为A、B、C、D,每本名著被选到的机会均等.

(1)学生小红计划选读两本名著,她恰好选读《西游记》和《水浒传》这两本名著的概率为多少?

(2)若学生小明和小刚各计划选读一本名著,他们两人恰好选读同一本名著的概率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

【探究展示】

1)证明:AM=AD+MC

2AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

【拓展延伸】

3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A、B、C是固定在桌面上的三根立柱,其中A柱上穿有三个大小不同的圆片,下面的直径总比上面的大现想将这三个圆片移动到B柱上,要求每次只能移动一片叫移动一次,被移动的圆片只能放入A、B、C三个柱之一且较大的圆片不能叠在小片的上面,那么完成这件事情至少要移动圆片的次数是  

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步练习册答案