【题目】如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为,求线段EF的长.
【答案】(1)见解析;(2)①45°;② -1
【解析】
(1)利用切线的性质可得到OC⊥CD,由此可证得AD∥OC,利用平行线的性质及等边对等角去证明∠DAC=∠OAC,由此可证得结论;
(2)①利用平行线的性质,可求出∠EOC的度数,再利用三角形内角和定理求出∠OCE的度数;②作OG⊥CE于点G,利用垂径定理可得到FG=CG,再利用解直角三角形求出CG=OG的长,在Rt△OGE中,利用勾股定理求出GE的长,然后根据EF=GE-FG即可求出EF的长.
(1)证明:∵直线CD与⊙O相切,
∴OC⊥CD,
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠OCA,
又∵OC=OA,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∴AC平分∠DAO;
(2)解:①由(1)可知AD∥OC,
∵∠DAO=105°,
∴∠EOC=∠DAO=105°,
∵∠E=30°,
∴∠OCE=45°,
②作OG⊥CE于点G,
由垂径定理可得FG=CG,
∵OC= ,∠OCE=45°,
∴CG=OG=1,
∴FG=1,
∵在Rt△OGE中,∠E=30°,
∴GE=,
∴EF=GE-FG=-1.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=10,BC=16.点D在边BC上,且点D到边AB和边AC的距离相等.
(1)用直尺和圆规作出点D(不写作法,保留作图痕迹,在图上标注出点D);
(2)求点D到边AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,与轴交于点.
(1)请直接写出不等式的解集;
(2)将轴下方的图象沿轴翻折,点落在点处,连接,,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点P、D分别在边BC、AC上,PA⊥AB,垂足为点A,DP⊥BC,垂足为点P,.
(1)求证:∠APD=∠C;
(2)如果AB=3,DC=2,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用线段EG,FH将正方形ABCD按如图1所示的方式分割成4个全等的四边形,且AE=BF=CG=DH,tan∠HFC=2,再将这四个四边形按如图2所示的方式拼成一个大正方形IJKL,若设正方形ABCD的面积为S1,正方形IJKL的面积为S2.小四边形MNPQ的面积为8,则 的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校同安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“了解”部分所对应扇形的圆心角为 度;并补全条形统计图.
(2)若该中学共有学生人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为 人;
(3)若从对校园安全知识达到“了解”程度的个女生和个男生中分别随机抽取人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂生产化肥的总任务一定,平均每天化肥产量y(吨)与完成生产任务所需要的时间x(天)之间成反比例关系,如果每天生产化肥125吨,那么完成总任务需要7天.
(1)求y关于x的函数表达式,并指出比例系数;
(2)若要5天完成总任务,则每天产量应达到多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com