【题目】如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2+x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
【答案】(1);
(2)△ABC是直角三角形 ,理由参见解析;
(3)(-8,0)、(8-,0)、(3,0)、(8+,0);
(4)(3,0).
【解析】试题分析:(1)由A点坐标确定解析式中c值,再把C点坐标代入解析式求出a值,从而确定此解析式;(2)根据解析式求出B点坐标,在Rt△AOB中,利用勾股定理求出AB,在Rt△AOC中,利用勾股定理求出AC,然后利用勾股定理的逆定理验证△ABC是直角三角形;(3)满足△ANC为等腰三角形的N点有四个,在x轴负半轴有两点,满足AN=AC,AC=NC,在x轴正半轴存在两点,满足AN=CN,AC=NC,然后先求出AC长,利用等腰三角形两腰相等,和勾股定理易求出N点横坐标,因为N在x轴上,所以纵坐标是0,从而得到N点坐标.(4)先找到自变量,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,利用平行线分线段成比例定理和三角形相似把MD用n表示出来,这样△AMN的面积就用△ABN的面积减去△BMN的面积,从而建立S与n的二次函数,讨论n的取值及函数最大值,即可求出△AMN面积最大时,点N的坐标.
试题解析:(1)∵A(0,4),∴c=4,,把点C坐标(8,0)代入解析式,得:a=-,∴二次函数表达式为;(2)令y=0,则解得,x1=8,x2="-2" ,∴点B的坐标为(-2,0),由已知可得,在Rt△AOB中,AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+ AC2=20+80=102=BC2,∴△ABC是直角三角形;(3)由勾股定理先求出AC,AC==,①在x轴负半轴,当AC=AN时,NO=CO=8,∴此时N(-8,0);②在x轴负半轴,当AC=NC时,NC=AC=,∵CO=8,∴NO=-8,∴此时N(8-,0);③在x轴正半轴,当AN=CN时,设CN=x,则AN=x,ON=8-x,在Rt△AON中, +=,解得:x=5,∴ON=3,∴此时N(3,0);④在x轴正半轴,当AC=NC时,AC=NC=,∴ON=+8,∴此时N(+8,0);综上所述:满足条件的N点坐标是(-8,0)、(8-,0)、(3,0)、(8+,0);(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO, ,∵MN∥AC,∴,∴,∵OA=4,BC=10,BN=n+2,∴MD=(n+2),∵S△AMN= S△ABN- S△BMN=
=-+5,∵-<0,∴n=3时,S有最大值,∴当△AMN面积最大时,N点坐标为(3,0).
科目:初中数学 来源: 题型:
【题目】港珠澳大桥全长约为55000米,将数据55000科学记数法表示为( )
A. 0.55×105B. 5.5×104C. 55×103D. 550×102
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①S△ADB=S△ADC;
②当0<x<3时,y1<y2;
③如图,当x=3时,EF= ;
④当x>0时,y1随x的增大而增大,y2随x的增大而减小.
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若把代数式x2-2x+3化为(x-m)2+k的形式,其中m,k为常数,结果正确的是( )
A. (x+1)2+4 B. (x-1)2+2 C. (x-1)2+4 D. (x+1)2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各项是真命题的是( )
A. 从直线外一点到已知直线的垂线段叫做这点到直线的距离
B. 过一点有且只有一条直线与已知直线平行
C. 有公共顶点且相等的两个角是对顶角
D. 同一平面内,不重合的两条直线的位置关系只有相交和平行两种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )
A. 8 B. 7或8 C. 6或7或8 D. 7或8或9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】假如你想知道你们班同学的身高情况,你必须进行调查,然后对你的调查结果加以总结,那么:
(1)你调查的问题是 ;
(2)你调查的对象是;
(3)你感兴趣的是调查对象的 ;
(4)你的调查方式是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com