精英家教网 > 初中数学 > 题目详情

【题目】如图1,某校有一块菱形空地ABCD,A=60°,AB=40m,现计划在内部修建一个四个顶点分别落在菱形四条边上的矩形鱼池EFGH,其余部分种花草,园林公司修建鱼池,草坪的造价为y(元)与修建面积s(m2)之间的函数关系如图2所示,设AE为x米.

(1)填空:ED=   m,EH=   m,(用含x的代数式表示);

(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)

(2)若矩形鱼池EFGH的面积是300m2,求EF的长度;

(3)EF的长度为多少时,修建的鱼池和草坪的总造价最低,最低造价为多少元?

【答案】(1) (2)10m30m;(3)x=20总造价最小,最小值为元;

【解析】

(1)直接写出结果即可.

(2)连接DB,判定△AEF为等边三角形,从而EF=x,利用(1)EH的长,根据矩形面积公式列出方程,解出x即可.

(3)根据图2得出草坪和鱼池的价,分别求出草坪和鱼池的面积(用含x的式子表示),从而得到一个总价为一个关于x二次函数,将其写成顶点式,便可得出函数的最值.

(1)

(2)连接,则EFDB

∴△是等边三角形

由(1)可知

解得经检验均符合题意,

答:的长度1030

(3)依题意得草坪单价为:4800÷80=60/2

鱼池单价为:4800÷96=50/2

∵四边形ABCD是菱形,∠BAD=60°,AB=40m,BD=40,AC=

∴菱形ABCD的面积是:

∵矩形EFGH的面积是:

∴草坪的面积是:

总造价为:

∴当时,总造价最小,最小值为

答:EF的长度为20m时,修建的鱼池和草坪的总造价最低,最低造价元.

故答案为:(1) (2)10m30m;(3)x=20总造价最小,最小值为元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是边ADCD上的点,AE=EDDF=DC,连接EF并延长交BC的延长线于点G

(1)求证:ABE∽△DEF

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:

(1)求抛物线的解析式及顶点D的坐标;

(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为   

(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标为(﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点分别在等边三角形的边上,,连接交于点,连接,以下结论:①;②;③的面积是面积的2倍;④;一定正确的有( )个.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平面直角坐标系中,ABC的三个顶点的坐标分别为A(2,2),B(1,﹣1),C(3,0).

(1)在图1中,画出以点O为位似中心,放大ABC到原来的2倍的△A1B1C1

(2)若P(a,b)是AB边上一点,平移ABC之后,点P的对应点P'的坐标是(a+3,b﹣2),在图2中画出平移后的△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.

(1)求证:AGE≌△BGF;

(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是(

A.6B.3C.2D.15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中菱形ABOC的顶点O在坐标原点BOx轴的负半轴上,∠BOC=60°,顶点C的坐标为m),反比例函数的图像与菱形对角线AO交于D连接BDBDx轴时k的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

同步练习册答案