精英家教网 > 初中数学 > 题目详情
11.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为8πcm.(结果保留π)

分析 先求得正多边形的每一个内角,然后由弧长计算公式.

解答 解:方法一:
先求出正六边形的每一个内角=$\frac{(6-2)×180°}{6}$=120°,
所得到的三条弧的长度之和=3×$\frac{120π×4}{180}$=8π(cm);

方法二:先求出正六边形的每一个外角为60°,
得正六边形的每一个内角120°,
每条弧的度数为120°,
三条弧可拼成一整圆,其三条弧的长度之和为8πcm.
故答案为:8π.

点评 本题考查了弧长的计算和正多边形和圆.与圆有关的计算,注意圆与多边形的结合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,在△ABC中,∠BAC=90°,D、E、F分别为边AB、BC、AC的中点,若AE=5,则DF=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(点D不与点A、B重合),连接CD,过点D作CD的垂线交射线CA于点E.当△ADE为等腰三角形时,AD的长度为1或$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某商场以每个80元的价格进了一批玩具,当售价为120元时,商场平均每天可售出20个.为了扩大销售,增加盈利,商场决定采取降价措施,经调查发现:在一定范围内,玩具的单价每降低1元,商场每天可多售出2个.设每个玩具售价下降了x元,但售价不得低于玩具的进价,商场每天的销售利润为y元.
(1)降价后商场平均每天可售出20+2x个玩具;
(2)求y与x的函数表达式,并直接写出自变量x的取值范围;
(3)商场将每个玩具的售价定为多少元时,可使每天获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AC=B′C′,AB=B′A′,则下列结论正确的是(  )
A.AC=A′C′B.BC=B′C′C.∠A=∠B′D.∠A=∠A′

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,已知A、B、C三点的坐标分别为A(1,0),B(4,0),C(5,5).试在给出的直角坐标平面内画△ABC,再画△A′B′C′,使得△A′B′C′≌△ABC,并求出△A′B′C′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠CBD=10°,则∠BAC的度数为40°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图在平面直角坐标系xOy中,反比例函数y1=$\frac{4}{x}$(x>0)的图象与一次函数y2=kx-k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)观察图象,直接写出使y1≥y2的x的取值范围;
(3)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为5.

查看答案和解析>>

同步练习册答案