【题目】九年级孟老师数学小组经过市场调查,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:
售价x(元/件) | 130 | 150 | 180 |
月销售量y(件) | 210 | 150 | 60 |
月销售利润w(元) | 10500 | 10500 | 6000 |
注:月销售利润=月销售量×(售价﹣进价)
(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);
②运动服的进价是 元/件;当售价是 元/件时,月销利润最大,最大利润是 元.
(2)由于某种原因,该商品进价降低了m元/件(m>0),商家规定该运动服售价不得低于150元/件,该商店在今后的售价中,月销售量与售价仍满足(1)中的函数关系式,若月销售量最大利润是12000元,求m的值.
【答案】(1)①y=﹣3x+600;②当售价是140元时,月销售利润最大,最大利润为10800元;(2)m的值为10.
【解析】
(1)设y关于x的函数解析式为:y=kx+b(k≠0),代入表中相关数据得二元一次方程组,解得k和b的值再代入y=kx+b即可;
(2)运动服的进价等于售价减去每件的利润;根据每件的利润乘以月销售量等于月销售利润,得关于x的二次函数,配方,根据二次函数的性质可得答案;
(3)根据进价变动后每件的利润变为[x﹣(80﹣m)]元,用其乘以月销售量,得到关于x的二次函数,求得对称轴,判断对称轴小于150,由开口向下的二次函数的性质可知,当x=150时w取得最大值12000,解关于m的方程即可.
(1)①设y关于x的函数解析式为:y=kx+b(k≠0)
由题意得:,
解得:,
∴y关于x的函数解析式为y=﹣3x+600;
②运动服的进价是:130﹣10500÷210=80(元),
月销售利润w=(x﹣80)(﹣3x+600),
=﹣3x2+840x﹣48000,
=﹣3(x﹣140)2+10800,
∴当售价是140元时,月销售利润最大,最大利润为10800元.
(2)由题意得:w=[x﹣(80﹣m)](﹣3x+600)=﹣3x2+(840﹣3m)x﹣48000+600m,
对称轴为x=140﹣,
∵m>0,
∴140﹣<140<150,
∵商家规定该运动服售价不得低于150元/件,
∴由二次函数的性质,可知当x=150时,月销售量最大利润是12000元,
∴﹣3×1502+(840﹣3m)×150﹣48000+600m=12000,
解得:m=10,
∴m的值为10.
科目:初中数学 来源: 题型:
【题目】如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:
(1)当t为何值时,△BDE的面积为7.5cm2;
(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC、BC、CD之间的数量关系.
小吴同学探究此问题的思路是:将ΔBCD绕点D逆时针旋转90°到ΔAED处,点B、C分别落在点A、E处(如图②),易证点C、A、E在同一条直线上,并且ΔCDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
图① 图② 图③ 图④
简单应用:
(1)在图①中,若AC=,BC=2,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙O上,弧AD=弧BD,若AB=13,BC=12,求CD的长.
拓展延伸:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的二次函数y=x2+bx+b2在b≤x≤b+3范围内,函数值有最小值21,则b的值是( )
A. 或2B.或±2C.﹣4或D.1或﹣4或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,点D为边AC的中点,请按下列要求作图
并解决问题:
(1)作点D关于BC的对称点O;
(2)在(1)的条件下,将△ABC绕点O顺时针旋转90°,
①画出旋转后的△EFG(其中A、B、C三点旋转后的对应点分别是点E、F、G);
②若∠C=a,则∠BGC= .(用含a的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是直线y=3上的动点,连接PO并将PO绕P点旋转90°到PO′,当点O′刚好落在双曲线(x>0)上时,点P的横坐标所有可能值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明:ED与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的内接三角形,AB为直径,,,点D为线段AC上一动点,过点D作AB的垂线交于点E,交AB于点F,连结BD,CF,并延长BD交于点H.
求的半径;
当DE经过圆心O时,求AD的长;
求证:;
求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com