【题目】已知为原点,点及在第一象限的动点,且,设的面积为.
(1)求关于的函数解析式;
(2)求的取值范围;
(3)当时,求点坐标;
(4)画出函数的图象.
【答案】(1)S=4x+48;(2)0<x<12;(3)P(9,3);(4)见解析.
【解析】
(1)根据三角形的面积公式即可得出结论;
(2)根据(1)中函数关系式及点P在第一象限即可得出结论;
(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;
(4)利用描点法画出函数图象即可.
解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),
∴S=×8×y=4y.
∵x+y=12,
∴y=12x.
∴S=4(12x)=484x,
∴所求的函数关系式为:S=4x+48;
(2)由(1)得S=4x+48>0,
解得:x<12;
又∵点P在第一象限,
∴x>0,
综上可得x的取值范围为:0<x<12;
(3)∵S=12,
∴4x+48=12,
解得x=9.
∵x+y=12,
∴y=129=3,
即P(9,3);
(4)∵函数解析式为S=4x+48,
∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.
所画图象如图:
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级同学到距学校8千米的某地参加社会实践活动,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,,分别表示步行和骑车的同学前往目的地所走的路程(千米)与所用时间(分钟)之间的函数图象.则下列判断错误的是( )
A. 骑车的同学比步行的同学晚出发30分钟
B. 骑车的同学和步行的同学同时到达目的地
C. 步行的速度是7.5千米/小时
D. 骑车的同学从出发到追上步行的同学用了18分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,E.F.G.H依次是各边的中点,O是四边形ABCD内一点,若四边形AEOH.四边形BFOE.四边形CGOF的面积分别为10.12.14,则四边形DHOG的面积=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)共随机调查了___名学生,课外阅读时间在68小时之间有___人,并补全频数分布直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数;
(3)请估计该校3000名学生每周的课外阅读时间不小于6小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器上销售一种微波炉和电磁炉,微波炉每台定价元,电磁炉每台定价元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案;
方案一:买一台微波炉送一台电磁炉;
方案二:微波炉和电磁炉都按定价的付款;
现某客户要到该卖场购买微波炉台,电磁炉台
(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含的式子表示)
(2)若,通过计算说明此时那种方案购买较为核算?
(3)当时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边内一点,,,点D是等边△ABC外一点,∠OCD=60°,OC=OD,连接OD、AD.
(1)求的度数(用含α的式子表示)
(2)求证:;
(3)探究:当α为多少度时,是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com