精英家教网 > 初中数学 > 题目详情
7.如图,C是线段AB的中点,D在线段CB上,AD=6,DB=4,则CD的长等于1.

分析 先根据C是线段AB的中点得出BC的长,再由CD=BC-BD即可得出结论.

解答 解:∵C是线段AB的中点,AD=6,DB=4,
∴BC=$\frac{1}{2}$(AD+DB)=5,
∴CD=BC-BD=5-4=1.
故答案为:1.

点评 本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.A,B两个港口相距300公里.若甲船顺水自A港口驶向B港口,乙船同时逆水驶向A港口,两船在C处相遇,若乙船自A港口驶向B港口,同时甲船自B港口驶向A港口,则两船在D处相遇,C处与D处相距30公里,已知甲船的速度为27km/h.请解答下列问题:
(1)若水流的速度为2km/h,求乙船的速度.
(2)若不知水流的速度,只知乙船的速度比甲船的速度大,你还能求出乙船的速度吗?若能,请求出来;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如果a表示一个负数,则|a|等于(  )
A.aB.0C.-aD.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,平面直角坐标系xOy中点A的坐标为(-1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值;
(4)在(3)的条件下,当四边形ABNO面积最大时,在抛物线上是否存在点P,使得∠PAO=∠NEO?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列运算正确的是(  )
A.$\sqrt{9}=±3$B.(-2)3=8C.-|-3|=3D.-22=-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图是按规律排列的式子,若第六行最中间两项的和的值是2052,则a的值为±2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.定义一种新运算?:a?b=4a+b,试根据条件回答问题
(1)计算:2?(-3)=5;
(2)若x?(-6)=3?x,请求出x的值;
(3)这种新定义的运算是否满足交换律,若不满足请举一个反例,若满足,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式;若你是商场负责人,会将销售价定为多少,来保证每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,△ABC中,MN∥BC,MC与BN相交于点O,如果AM:MB=1:2,则NO:OB=(  )
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

同步练习册答案