·ÖÎö £¨1£©ÏÈÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßABµÄ½âÎöʽ£¬È»ºó¼ÆËã×Ô±äÁ¿Îª0ʱµÄº¯ÊýÖµ¼´¿ÉµÃµ½Eµã×ø±ê£»
£¨2£©ÀûÓôý¶¨ÏµÊýÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©Èçͼ1£¬×÷NG¡ÎyÖá½»OBÓÚG£¬Èçͼ£¬ÀûÓÃÒ»´Îº¯ÊýºÍ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬ÉèN£¨m£¬$\frac{1}{2}$m2-$\frac{1}{2}$m£©£¨0£¼m£¼3£©£¬ÔòG£¨m£¬m£©£¬ÔÙ¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½¼ÆËã³öS¡÷AOB£¬ºÍS¡÷BON£¬È»ºóµÃµ½SËıßÐÎABNOºÍmµÄ¶þ´Îº¯Êý¹ØÏµÊ½£¬ÔÙ¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó½â£»
£¨4£©ÉèÖ±ÏßNEµÄ½âÎöʽΪy=px+q£¬Ö±ÏßEN½»xÖáÓÚH£¬Ö±ÏßPA½»OBÓÚQ£¬Èçͼ2£¬ÏÈÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßNEµÄ½âÎöʽ£¬Ôò¿ÉÈ·¶¨Hµã×ø±ê£¬ÔÙÖ¤Ã÷Rt¡÷AOQ¡×Rt¡÷EOH£¬ÀûÓÃÏàËÆ±È¼ÆËã³öOQ£¬ÔòÀûÓõãQÔÚÖ±Ïßy=xÉÏ¿ÉÈ·¶¨Qµã×ø±ê£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßAQµÄ½âÎöʽ£¬È»ºó½âÓɶþ´Îº¯ÊýÓëÖ±ÏßAQµÄ½âÎöʽËù×é³ÉµÄ·½³Ì×é¼´¿ÉµÃµ½Pµã×ø±ê£®
½â´ð ½â£º£¨1£©ÉèÖ±ÏßABµÄ½âÎöʽΪy=mx+n£¬![]()
°ÑA£¨-1£¬1£©£¬B£¨3£¬3£©´úÈëµÃ$\left\{\begin{array}{l}{-m+n=1}\\{3m+n=3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{1}{2}}\\{n=\frac{3}{2}}\end{array}\right.$£¬
ËùÒÔÖ±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x+$\frac{3}{2}$£¬
µ±x=0ʱ£¬y=$\frac{1}{2}$x+$\frac{3}{2}$=$\frac{3}{2}$£¬
ËùÒÔEµã×ø±êΪ£¨0£¬$\frac{3}{2}$£©£»
£¨2£©ÉèÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
°ÑA£¨-1£¬1£©£¬B£¨3£¬3£©£¬O£¨0£¬0£©´úÈëµÃ$\left\{\begin{array}{l}{a-b+c=1}\\{9a+3b+c=3}\\{c=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$£¬![]()
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$x2-$\frac{1}{2}$x£»
£¨3£©Èçͼ1£¬×÷NG¡ÎyÖá½»OBÓÚG£¬Èçͼ£¬Ö±ÏßOBµÄ½âÎöʽΪy=x£¬
ÉèN£¨m£¬$\frac{1}{2}$m2-$\frac{1}{2}$m£©£¨0£¼m£¼3£©£¬ÔòG£¨m£¬m£©£¬GN=m-£¨$\frac{1}{2}$m2-$\frac{1}{2}$m£©=-$\frac{1}{2}$m2+$\frac{3}{2}$m£¬
S¡÷AOB=S¡÷AOE+S¡÷BOE=$\frac{1}{2}$¡Á1¡Á$\frac{3}{2}$+$\frac{1}{2}$¡Á$\frac{3}{2}$¡Á3=3£¬S¡÷BON=S¡÷ONG+S¡÷BNG=$\frac{1}{2}$•3•£¨-$\frac{1}{2}$m2+$\frac{3}{2}$m£©=-$\frac{3}{2}$m2+$\frac{9}{4}$£¬
ËùÒÔSËıßÐÎABNO=S¡÷BON+S¡÷AOB=-$\frac{3}{2}$m2+$\frac{9}{4}$+3=-$\frac{3}{4}$£¨m-$\frac{3}{2}$£©2+$\frac{75}{16}$
µ±m=$\frac{3}{2}$ʱ£¬ËıßÐÎABNOÃæ»ýµÄ×î´óÖµ£¬×î´óֵΪ$\frac{75}{16}$£¬´ËʱNµã×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{3}{8}$£©£»
£¨4£©ÉèÖ±ÏßNEµÄ½âÎöʽΪy=px+q£¬Ö±ÏßEN½»xÖáÓÚH£¬Ö±ÏßPA½»OBÓÚQ£¬Èçͼ2£¬
°ÑE£¨0£¬$\frac{3}{2}$£©£¬N£¨$\frac{3}{2}$£¬$\frac{3}{8}$£©´úÈëµÃ$\left\{\begin{array}{l}{q=\frac{3}{2}}\\{\frac{3}{2}p+q=\frac{3}{8}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{p=-\frac{3}{4}}\\{q=\frac{3}{2}}\end{array}\right.$£¬
ËùÒÔÖ±ÏßNEµÄ½âÎöʽΪy=-$\frac{3}{4}$x+$\frac{3}{2}$£¬
µ±y=0ʱ£¬-$\frac{3}{4}$x+$\frac{3}{2}$=0£¬½âµÃx=2£¬ÔòH£¨2£¬0£©£¬
¡ßA£¨-1£¬1£©£¬B£¨3£¬3£©£¬
¡à¡ÏAOE=45¡ã£¬¡ÏBOE=45¡ã£¬
¡à¡ÏAOB=90¡ã£¬
¡ß¡ÏPAO=¡ÏNEO£¬
¡àRt¡÷AOQ¡×Rt¡÷EOH£¬
¡àOA£ºOE=OQ£ºOH£¬¼´$\sqrt{2}$£º$\frac{3}{2}$=OQ£º2£¬½âµÃOQ=$\frac{4\sqrt{2}}{3}$£¬
¡àQ£¨$\frac{4}{3}$£¬$\frac{4}{3}$£©£¬
¡àÖ±ÏßAQµÄ½âÎöʽΪy=$\frac{1}{7}$x+$\frac{8}{7}$£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{7}x+\frac{8}{7}}\\{y=\frac{1}{2}{x}^{2}-\frac{1}{2}x}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{16}{7}}\\{y=\frac{72}{49}}\end{array}\right.$£¬
¡àPµã×ø±êΪ£¨$\frac{16}{7}$£¬$\frac{72}{49}$£©£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍ¶þ´Îº¯ÊýµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýºÍÒ»´Îº¯ÊýµÄÐÔÖÊ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬ÀûÓÃÃæ»ýµÄºÍ²î¼ÆËã²»¹æÔòͼÐεÄÃæ»ý£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£¬-4£© | B£® | £¨-1£¬4£© | C£® | £¨-1£¬-4£© | D£® | £¨1£¬4£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | -4 | C£® | 6 | D£® | -6 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com