【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线a、b、c上,且a、b之间的距离为1,b、c之间的距离为2,则AC2=( )
A.13B.20C.25D.26
【答案】D
【解析】
过A作AE⊥c于E,过C作CF⊥c于F,求出∠AEB=∠CFB,∠EAB=∠CBF,根据AAS证△AEB≌△BFC,推出AE=BF=2,BE=CF=3,由勾股定理求出AB和BC,再由勾股定理求出AC即可.
过A作AE⊥c于E,过C作CF⊥c于F,
则∠AEF=∠CFB=∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠EAB+∠ABE=90°,
∴∠EAB=∠CBF,
∵在△AEB和△BFC中
∵,
∴△AEB≌△BFC(AAS),
∴AE=BF=2,BE=CF=2+1=3,
由勾股定理得:AB=BC==,
由勾股定理得:AC2=AB2+BC2=26,
故选:D.
科目:初中数学 来源: 题型:
【题目】学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为x1,x2,就能快速求出+,x12+x22,…的值了.比如设x1,x2是方程x2+2x-3=0的两个根,则x1+x2=-2,x1x2=-3,得+==.”
(1)小亮的说法对吗?简要说明理由;
(2)写一个你最喜欢的一元二次方程,并求出两根的平方和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实践与探究
在综合实践课上,老师让同学们以两个全等的三角形纸片为操作对象,进行相关问题的探究.如图1,△ABC≌△DEF,其中∠ACB=90°,∠A=30°,AB=4.
(1)请直接写出EF= ;
(2)新星小组将这两张纸片按如图2所示的方式放置后,经过观察发现四边形ACBF是矩形,请你证明这个结论.
(3)新星小组在图2的基础上,将△DEF纸片沿AB方向平移至如图3的位置,其中点E与AB的中点重合,连接CE,BF.请你判断四边形BCEF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6.
(1)试说明:△ADF是直角三角形;
(2)求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 和△DEF 中,给出下列四组条件:
①AB=DE, BC=EF, AC=DF
②AB=DE, ∠B=∠E, BC=EF
③∠B=∠E, BC=EF, ∠C=∠F
④∠A=∠D, ∠B=∠E, AB=DF
其中能使△ABC≌△DEF 的条件有( )
A.1 组B.2 组C.3 组D.4 组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆普通票价为20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不计次数。设游泳x次时,所需总费用为y元。
(1)分别写出选择银卡,普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com