【题目】如图,在中,D是BC的中点,E是AD的中点,过点A作,AF与CE的延长线相交于点F,连接BF.
(1)求证:四边形AFBD是平行四边形;
(2)①若四边形AFBD是矩形,则必须满足条件_________;
②若四边形AFBD是菱形,则必须满足条件_________.
【答案】(1)见解析;(2)①AB=AC;②∠BAC=90°
【解析】
(1)先证明△AEF≌△DEC,得出AF=DC,再根据有一组对边平行且相等证明四边形AFBD是平行四边形;
(2))①当△ABC满足条件AB=AC时,可得出∠BDA=90°,则四边形AFBD是矩形;②当∠BAC=90°时,可得出AD=BD,则四边形AFBD是菱形。
解:(1)∵E是AD中点
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DCE,
∵∠AEF=∠DEC,
∴△AEF≌△DEC
∴AF=DC,
∵D是BC中点,
∴BD=DC,
∴AF=BD,
又∵AF∥BC,即AF∥BD,
∴四边形AFBD是平行四边形;
(2)①当△ABC满足条件AB=AC时,四边形AFBD是矩形;
理由是:
∵AB=AC,D是BC中点,
∴AD⊥BC,
∴ ∠BDA=90°
∵四边形AFBD是平行四边形,
∴四边形AFBD是矩形.
故答案为:AB=AC
②当∠BAC=90°时,四边形AFBD是菱形。
理由是:
∵∠BAC=90°,D是BC中点,
∴AD=BC=BD,
∵四边形AFBD是平行四边形,
∴四边形AFBD是菱形。
故答案为:∠BAC=90°
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y = x上,那么称该菱形为点A,C的“极好菱形”. 下图为点A,C的“极好菱形”的一个示意图.
已知点M的坐标为(1,1),点P的坐标为(3,3).
(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”的顶点的是 ;
(2)如果四边形MNPQ是点M,P的“极好菱形”.
①当点N的坐标为(3,1)时,求四边形MNPQ的面积;
②当四边形MNPQ的面积为8,且与直线y = x + b有公共点时,写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的函数关系式;
(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A型、B型电脑各多少台,才能使销售总利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连接BD,作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长;
(3)设点D的坐标为(x,y),求y关于x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.
请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,cm, cm,在中,,cm,cm.EF在BC上,保持不动,并将以1cm/s的速度向点C运动,移动开始前点F与点B重合,当点E与点C重合时,停止移动.边DE与AB相交于点G,连接FG,设移动时间为t(s).
(1)从移动开始到停止,所用时间为________s;
(2)当DE平分AB时,求t的值;
(3)当为等腰三角形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在第四象限内的矩形OABC,两边在坐标轴上,一个顶点在一次函数y=0.5x﹣3的图象上,当点A从左向右移动时,矩形的周长与面积也随之发生变化,设线段OA的长为m,矩形的周长为C,面积为S.
(1)试分别写出C、S与m的函数解析式,它们是否为一次函数?
(2)能否求出当m取何值时,矩形的周长最大?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.
(1)求证:AF=EF;
(2)若,求sin∠DOF的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com