精英家教网 > 初中数学 > 题目详情

【题目】如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为 的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是(
A.1
B.
C.
D.2

【答案】D
【解析】解:设AB=a,BB1=h, 则OB= a,连接OB1 , OB,则OB2+BB12=OB12=3,
=3,
∴a2=6﹣2h2
故正四棱柱的体积是V=a2h=6h﹣2h3
∴V′=6﹣6h2
当0<h<1时,V′>0,1<h< 时,V′<0,
∴h=1时,该四棱柱的体积最大,此时AB=2.
故选:D.

设AB=a,BB1=h,求出a2=6﹣2h2 , 故正四棱柱的体积是V=a2h=6h﹣2h3 , 利用导数,得到该正四棱柱体积的最大值,即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣2x)1nx+ax2+2,g(x)=f(x)﹣x﹣2. (Ⅰ)当a=﹣1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)若a>0且函数g(x)有且仅有一个零点,求实数a的值;
(Ⅲ)在(Ⅱ)的条件下,若e﹣2<x<e时,g(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知集合A={x∈N|x<3},B={x|x=a﹣b,a∈A,b∈A},则A∩B=(
A.{1,2}
B.{﹣2,﹣1,0,1,2}
C.{1}
D.{0,1,2}

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=
(1)证明:k∈R,直线y=g(x)都不是曲线y=f(x)的切线;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为AD的中点,异面直线AP与CD所成的角为90°.
(Ⅰ)证明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求二面角A﹣PE﹣C的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设函数f(x)= ,则满足f(f(m))=3f(m)的实数m的取值范围是(
A.(﹣∞,0)∪{﹣ }
B.[0,1]
C.[0,+∞)∪{﹣ }
D.[1,+∞)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数列{an} 满足a1= ,a2= ,an+2﹣an+1=(﹣1)n+1(an+1﹣an)(n∈N*),数列{an}的前n项和为Sn , 则S2017=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是( )

A.4
B.6
C.9
D.13

查看答案和解析>>

同步练习册答案