【题目】若∠A与∠B的两边分别垂直,请判断这两个角的等量关系.
(1)如图1,∠A与∠B的关系是 ;如图2,∠A与∠B的关系是 ;
(2)若∠A与∠B的两边分别平行,试探索这两个角的等量关系,画图并证明你的结论.
【答案】(1)∠A=∠B,∠A+∠B=180°;(2)见解析
【解析】
试题分析:(1)根据垂直的量相等的角都等于90°,对顶角相等,所以∠A=∠B,同样根据垂直的量相等的角都等于90°,根据四边形的内角和等于360°,所以∠A+∠B=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补;
(2)根据平行线的性质得到同位角相等,同旁内角互补即可得到结论.
(1)如图1,∠A=∠B,
∵∠ADE=∠BCE=90°,∠AED=∠BEC,
∴∠A=180°﹣∠ADE﹣∠AED,
∠B=180°﹣∠BCE﹣∠BEC,
∴∠A=∠B,
如图2,∠A+∠B=180°;
∴∠A+∠B=360°﹣90°﹣90°=180°.
∴∠A与∠B的等量关系是互补;
故答案为:∠A=∠B,∠A+∠B=180°;
(2)如图3,∠A=∠B,
∵AD∥BF,∴∠A=∠1,
∵AE∥BG,∴∠1=∠B,
∴∠A=∠B;
如图4,∠A+∠B=180°,
∵AD∥BG,
∴∠A=∠2,
∵AE∥BF,
∴∠2+∠B=180°,
∴∠A+∠B=180°.
科目:初中数学 来源: 题型:
【题目】教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图 (如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c ),大正方形的面积可以表示为c2,也可以表示为4×ab+(a-b)2由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,那么a2+b2=c2.
(1) 图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2) 如图③,在Rt△ABC中,∠ACB=90°,AC=3 cm,BC=4 cm,则斜边AB上的高CD的长为________cm.
(3) 试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2,画在图④的网格中,并标出字母a,b所表示的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中有两点A(-2,2),B(1,4),根据要求求出P点的坐标:
(1)在x轴上找一点P,使得最小
(2)在y轴上找一点P,使得最小
(3)在x轴上找一点P,使得最大
(4)在x轴上找一点P,使得最小
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com