【题目】列方程(组)或不等式(组)解应用题:
(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?
(2)某工厂准备购进、两种机器共20台用于生产零件,经调查2台型机器和1台型机器价格为18万元,1台型机器和2台型机器价格为21万元.
①求一台型机器和一台型机器价格分别是多少万元?
②已知1台型机器每月可加工零件400个,1台型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?
【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A,B两种型号机器的单价分别为5万元和8万元;②有三种购买方案:方案一:购买A型机器7台,B型机器13台,方案二:购买A型机器8台,B型机器12台,方案三:购买A型机器9台,B型机器11台,方案三更省钱.
【解析】
(1)设甲每小时加工x个零件,乙每小时加工y个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;
(2)①设A,B两种型号机器的单价分别为x万元和y万元,根据题意得方程组,解答即可;
②设购买A型机器m台,则购买B型机器(20-m)台,根据购买总价和生产数量列出不等式组求解即可.
(1)设甲每小时加工x个零件,乙每小时加工y个零件,
根据题意得:,
解方程组得:,
答:甲每小时加工个20零件,乙每小时加工24个零件.
(2)①设A,B两种型号机器的单价分别为x万元和y万元,根据题意得
解得,
即:A,B两种型号机器的单价分别为5万元和8万元
②设购买A型机器m台,则购买B型机器(20-m)台,根据题意得,
解得,
∵m是整数,m取7,8,9,
∴有三种购买方案:
方案一:购买A型机器7台,B型机器13台,此时购买所需资金为:7×5+13×8=139(万元)
方案二:购买A型机器8台,B型机器12台,此时购买所需资金为:8×5+12×8=136(万元)
方案三:购买A型机器9台,B型机器11台,此时购买所需资金为:9×5+11×8=133(万元)
因此,方案三更省钱.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AC=BC=5,AB=6,点E是线段AB上的动点(不与端点重合),点F是线段AC上的动点,连接CE、EF,若在点E、点F的运动过程中,始终保证∠CEF=∠B.当以点C为圆心,以CF为半径的圆与AB相切时,则BE的长为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.
(2)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
①在图中画出与△ABC关于直线l成轴对称的△AB′C′;
②△ABC的面积为____________;
③在直线l上找一点P,使PB+PC的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在数轴上,两点对应数分别为-3,20.
(1)若点为线段的中点,求点对应的数.
(2)若点以每秒3个单位,点以每秒2个单位的速度同时出发向右运动多长时间后,两点相距2个单位长度?
(3)若点,同时分别以2个单位长度秒的速度相向运动,点(点在原点)同时以4个单位长度/秒的速度向右运动.
①经过秒后与之间的距离(用含的式子表示)
②几秒后点到点、点的距离相等?求此时对应的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】股市一周内周六、周日两天不开市,股民小王上周五以每股25.20元的价格买进某公司股票10000股,下表为本周内每天该股票的涨跌情况:
星期 | 一 | 二 | 三 | 四 | 五 |
每股涨 跌情况 | -0.1 | +0.4 | -0.2 | -0.4 | +0.5 |
注:表中正数表示股价比前一天上涨,负数表示股价比前一天下跌.
(1)星期四收盘时,每股多少元?
(2)本周内哪一天股价最高,是多少元?
(3)股民小王本周末将该股票全部售出(不记交易税),小王在本次交易中获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).
(1)填空:△ABC的面积为 ;
(2)求直线AB的解析式;
(3)求S关于m的解析式,并写出m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com