精英家教网 > 初中数学 > 题目详情

【题目】3分)在Rt△ABC中,∠C=90°AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,ABx轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为

【答案】

【解析】试题分析:∵∠C=90°AC=BC=1∴AB==;根据题意得:△ABC绕点B顺时针旋转135°BC落在x轴上;△ABC再绕点C顺时针旋转90°AC落在x轴上,停止滚动,A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:A经过的路线与x轴围成的图形是:一个圆心角为135°,半径为的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形,A经过的路线与x轴围成图形的面积==;故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在桌面上,有若千个完全相同的小正方体堆成的一个几何体,每个小正方体的边长为,如图所示.

请画出这个几何体的三视图. (用黑色水笔描清楚)

若将此几何体的表面喷上红漆(放在桌面上的一面不喷),则几何体上喷上红漆的面积为 (用含的代数式表示)

若现在你的手头还有这样的一些边长为的小正方体可添放在几何体上,要保持主视图和左视图不变,则最多可以添加 个小正方体.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABC和ACB的平分线交于点E,过点E作MNBC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形 ABCD 中,对角线 ACBD 相交于点 O,过点 D 作对角线 BD 的垂线交 BA 的延长线于点 E

(1)证明:四边形 ACDE 是平行四边形;(2)若 AC24BD18,求△ADE 的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店以每件80元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件的售价每降低2元,其销售量可增加10件.

(1)该网店销售该商品原来一天可获利润 元.

(2)设后来该商品每件售价降价元,网店一天可获利润元.

①若此网店为了尽可能增加该商品的销售量,且一天仍能获利1080元,则每件商品的售价应降价多少元?

②求之间的函数关系式,当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的考拉兹猜想,又称奇偶归一猜想.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数最少经过6步运算可得到1,则的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为 A,B,C,D 四个等级.设学习时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2 ,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:

(1)该校共调查了多少名学生;

(2)将条形统计图补充完整;

(3)求出表示 B等级的扇形圆心角 α 的度数;

(4)在此次问卷调查中,甲班有 2 人平均每天课外学习时间超过 2 小时,乙班有 3 人平均每天课外学习时间超过 2 小时,若从这 5 人中任选 2人去参加座谈,试用列表或画树状图的方法求选出的2

来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海中一渔船在A处与小岛C相距70海里,若该渔船由西向东航行30海里到达B处,此时测得小岛C位于B的北偏东30°方向上,则该渔船此时与小岛C之间的距离是_____海里.

查看答案和解析>>

同步练习册答案