精英家教网 > 初中数学 > 题目详情

【题目】1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为x(x≥0).

()根据题意,填写下表

上升时间/min

10

30

x

1号探测气球所在位置的海拔/m

15

2号探测气球所在位置的海拔/m

30

()在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.

()0≤x≤50时,两个气球所在位置的海拔最多相差多少米?

【答案】(1)3530(2)此时气球上升了20min,都位于海拔25m的高度;(3)时,y最大值为15.

【解析】

(Ⅰ)根据距离=速度×时间,分别计算即可得答案;(Ⅱ)根据上升的高度相同列方程可求出x的值,进而可求出两个气球所在高度;(Ⅲ)设两个气球在同一时刻所在的位置的海拔相差m,由(Ⅱ)可知x=20时,两气球所在高度相同,当0≤x<20时,y=-0.5x+10,当20<x≤50时,y=0.5x-10,根据一次函数的性质分别求出最大值,比较即可得答案.

130×1+5=35x+5

10×0.5+15=200.5x+15

故答案为:3520

2)两个气球能位于同一高度.

根据题意,

解得,

.

答:能位于同一高度,此时气球上升了20min,都位于海拔25m的高度.

3)设两个气球在同一时刻所在的位置的海拔相差ym

由(Ⅱ)可知x=20时,两气球所在高度相同,

∴①当0≤x<20时,由题意,可知1号探测气球所在位置始终低于2号气球,

.

∵-0.50,

yx的增大而减小,

∴当时,y取得最大值10.

②当20<x≤50时,由题意,可知1号探测气球所在位置始终高于2号气球,

.

0.50

yx的增大而增大,

∴当时,y取得最大值15.

综上,当时,y最大值为15.

答:两个气球所在位置的海拔最多相差15m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某保健品厂每天生产AB两种品牌的保健品共600瓶,AB两种产品每瓶的成本和售价如下表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.

A

 B

成本(元)/

50

 35

售价(元)/

70

   50

1)请求出y关于x的函数关系;

2)该厂每天生产的AB两种产品被某经销商全部订购,厂家对B产品不变,对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,连结AD,点EAD的中点,连结BE并延长交CDF点.

1)请说明ABE≌△DFE的理由;

2)连结CEAC,CBCDAC=CD,D=30°CD=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种学生用计算器,进价为每台20元,售价为每台30元时,每周可卖160台,如果每台售价每上涨2元,每周就会少卖20台,但厂家规定最高每台售价不能超过33元,当计算器定价为多少元时,商场每周的利润恰好为1680元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边CD的中点E处,折痕为FG,点FG分别在边ADBC上,则折痕FG的长度为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,售价每件不低于60元且每件不高于80.当售价为每件60元是,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2.设每件商品的售价为元(为正整数),每个月的销售利润为.

1)求的函数关系式并直接写出自变量的取值范围;

2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

3)当每件商品定价为多少元使得每个月的利润恰为2250元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直径ABCD相互垂直,P为弧BC上任意一点,连PCPAPDPB,下列结论:①∠APC=∠DPE;②∠AED=∠DFA;③;其中正确的是(  )

A. ①③B. 只有①C. 只有②D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下说法合理的是(  )

A. 小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是

B. 某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖

C. 某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是

D. 小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M,N分别是正方形ABCD的边BC,CD上的点,且BM=CN, AM与BN交于点P,试探索AM与BN的关系.

(1)数量关系_____________________,并证明;

(2)位置关系_____________________,并证明.

查看答案和解析>>

同步练习册答案