9£®Èçͼ£¬Å×ÎïÏßy=$\frac{1}{2}$x2+nx-2ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚµãD£¬ÒÑÖªA£¨-1£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£»
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PCDÊÇÖ±½ÇÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©µãMÊÇÏß¶ÎBCÉϵÄÒ»¸ö¶¯µã£¬¹ýµãM×÷xÖáµÄ´¹Ïߣ¬ÓëÅ×ÎïÏßÏཻÓÚµãN£¬µ±µãMÒÆ¶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎCDBNµÄÃæ»ý×î´ó£¿Çó³öËıßÐÎCDBNµÄ×î´óÃæ»ý¼°´ËʱMµãµÄ×ø±ê£®

·ÖÎö £¨1£©½«µãA´úÈëÅ×ÎïÏß½âÎöʽ£¬¿ÉµÃnµÄÖµ£¬¼Ì¶ø¿ÉµÃÅ×ÎïÏߵıí´ïʽ£»
£¨2£©ÒòΪPÔÚÅ×ÎïÏß¶Ô³ÆÖáÉÏ£¬Ôò¿É·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬¢Ù¡ÏCPD=90¡ã£¬¢Ú¡ÏPCD=90¡ã£¬·Ö±ðÇó³öµãP×ø±ê¼´¿É£»
£¨3£©ÏÈÈ·¶¨Ö±ÏßBC½âÎöʽ£¬Éè³öµãM×ø±ê£¬¼Ì¶øµÃ³öµãN×ø±ê±íʾ³öMNµÄ³¤¶È£¬ÔÙÓÉSËıßÐÎCDBN=S¡÷CDB+S¡÷BMN+S¡÷CMN£¬½áºÏ¶þ´Îº¯ÊýµÄ×îÖµ£¬¼´¿ÉÈ·¶¨µãMµÄ×ø±ê¼°×î´óÃæ»ý£®

½â´ð ½â£º£¨1£©°ÑµãA£¨-1£¬0£©´úÈëy=$\frac{1}{2}$x2+nx-2µÃ£¬n=-$\frac{3}{2}$£¬
¼´Å×ÎïÏߵıí´ïʽΪ£ºy=$\frac{1}{2}$x2-$\frac{3}{2}$x-2£®
£¨2£©´æÔÚ£®
¡ßy=$\frac{1}{2}$x2-$\frac{3}{2}$x-2£¬
¡àÅ×ÎïÏß¶Ô³ÆÖáΪ£ºx=$\frac{3}{2}$£¬
¢Ùµ±¡ÏCPD=90¡ãʱ£¬ºÜÏÔÈ»µãP×ø±êΪ£¨$\frac{3}{2}$£¬-2£©£»
¢Úµ±¡ÏPCD=90¡ãʱ£¬Èçͼ¢ÙËùʾ£º

CD=$\sqrt{O{D}^{2}+O{C}^{2}}$=$\frac{5}{2}$£¬
¡ßcos¡ÏCDP=$\frac{CD}{PD}$=cos¡ÏDCO=$\frac{OC}{CD}$=$\frac{4}{5}$£¬
¡àPD=$\frac{25}{8}$£¬
ÔòµãP×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{25}{8}$£©£®
×ÛÉϿɵ㺴æÔÚµãP£¬Ê¹¡÷PCDÊÇÖ±½ÇÈý½ÇÐΣ¬µãP×ø±êΪ£¨$\frac{3}{2}$£¬-2£©»ò£¨$\frac{3}{2}$£¬-$\frac{25}{8}$£©£®
£¨3£©¹ýÏß¶ÎBCÉÏÒ»µãM×÷MN¡ÍxÖᣬ´¹×ãΪF£¬ÓëÅ×ÎïÏß½»ÓÚµãN£¬¹ýµãC×÷CE¡ÍMN£¬´¹×ãΪE£¬Èçͼ¢ÚËùʾ£º

Óɶþ´Îº¯Êý½âÎöʽ¿ÉµÃµãB£¨4£¬0£©£¬µãC£¨0£¬-2£©£¬
ÉèBC½âÎöʽΪy=kx+b£¬
Ôò$\left\{\begin{array}{l}{4k+b=0}\\{b=-2}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=-2}\end{array}\right.$£¬
ÔòÖ±ÏßBC½âÎöʽΪy=$\frac{1}{2}$x-2£¬
ÉèµãMµÄ×ø±êΪ£¨m£¬$\frac{1}{2}$m-2£©£¬ÔòµãNµÄ×ø±êΪ£¨m£¬$\frac{1}{2}$m2-$\frac{3}{2}$m-2£©£¬
MN=£¨$\frac{1}{2}$m-2£©-£¨$\frac{1}{2}$m2-$\frac{3}{2}$m-2£©=-$\frac{1}{2}$m2+2m£¬
¡àSËıßÐÎCDBN=S¡÷CDB+S¡÷BMN+S¡÷CMN
=$\frac{1}{2}$BD¡ÁOC+$\frac{1}{2}$MN¡ÁBF+$\frac{1}{2}$MN¡ÁCE
=$\frac{1}{2}$£¨4-$\frac{3}{2}$£©¡Á2+$\frac{1}{2}$MN£¨BF+CE£©
=$\frac{5}{2}$+$\frac{1}{2}$£¨-$\frac{1}{2}$m2+2m£©¡Á4
=-m2+4m+$\frac{5}{2}$
=-£¨m-2£©2+$\frac{13}{2}$£¬
µ±m=2ʱ£¬SËıßÐÎCDBNÓÐ×î´óÖµ£¬×î´óֵΪ$\frac{13}{2}$£¬´ËʱµãMµÄ×ø±êΪ£¨2£¬-1£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ۺϣ¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ¡¢¶þ´Îº¯ÊýµÄ×îÖµ¡¢Èý½ÇÐεÄÃæ»ý£¬½â´ð±¾ÌâµÄ¹Ø¼üÊÇÊýÐνáºÏ˼Ïë¼°·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ì½Ë÷¹æÂɽ«Á¬ÐøµÄż2£¬4£¬6£¬8£¬¡­£¬ÅųÉÈç±í£º
£¨1£©Ê®×Ö¿òÖеÄÎå¸öÊýµÄºÍÓëÖмäµÄÊýºÍ16ÓÐʲô¹ØÏµ£¿
£¨2£©ÉèÖмäµÄÊýΪx£¬ÓôúÊýʽ±íʾʮ×Ö¿òÖеÄÎå¸öÊýµÄºÍ£®
£¨3£©Èô½«Ê®×Ö¿òÉÏÏÂ×óÓÒÒÆ¶¯£¬¿É¿òסÁíÍâµÄÎåλÊý£¬ÆäËüÎåλÊýµÄºÍÄܵÈÓÚ201Âð£¿ÈçÄÜ£¬Ð´³öÕâÎåλÊý£»Èç²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®µãOΪֱÏßABÉÏÒ»µã£¬¹ýµãO×÷ÉäÏßOC£¬Ê¹¡ÏBOC=65¡ã£¬½«Ò»Ö±½ÇÈý½Ç°åµÄÖ±½Ç¶¥µã·ÅÔÚµãO´¦£®
£¨1£©Èçͼ¢Ù£¬½«Èý½Ç°åMONµÄÒ»±ßONÓëÉäÏßOBÖØºÏʱ£¬Ôò¡ÏMOC=25¡ã£»
£¨2£©Èçͼ¢Ú£¬½«Èý½Ç°åMONÈÆµãOÄæÊ±ÕëÐýתһ¶¨½Ç¶È£¬´ËʱOCÊÇ¡ÏMOBµÄ½Çƽ·ÖÏߣ¬ÇóÐýת½Ç¡ÏBONºÍ¡ÏCONµÄ¶ÈÊý£»
£¨3£©½«Èý½Ç°åMONÈÆµãOÄæÊ±ÕëÐýתÖÁͼ¢Ûʱ£¬¡ÏNOC=$\frac{1}{4}$¡ÏAOM£¬Çó¡ÏNOBµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÓÐÒ»¸ö¶¥½ÇΪ30¡ãµÄµÈÑüÈý½ÇÐΣ¬ÈôÑü³¤Îª2£¬ÔòÑüÉϵĸßÊÇ1£¬Èý½ÇÐÎÃæ»ýÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼËùʾ£¬ADΪ°ëÔ²OµÄÖ±¾¶£¬AB£¬CDÓë°ëÔ²OÏàÇÐÓÚA£¬DÁ½µã£¬BCÓë°ëÔ²OÏàÇÐÓÚµãE£®ÈôAB=4£¬CD=9£¬Ôò°ëÔ²OµÄÖ±¾¶ÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¡÷ABCÖУ¬ADΪBC±ßÉϵÄÖÐÏߣ¬ÒÑÖªAB=5£¬AC=3£¬ÇóÏß¶ÎADµÄ³¤µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬Ã¿¸öÕý·½Ðεı߳¤¶¼ÊÇ1£¬·Ö±ð×÷³ö¡÷PQR¹ØÓÚÖ±Ïßx=1£¨¼ÇΪm£©ºÍÖ±Ïßy=-1£¨¼ÇΪn£©¶Ô³ÆµÄͼÐΣ¬ËüÃǵĶÔÓ¦µãµÄ×ø±êÖ®¼ä·Ö±ðÓÐʲô¹ØÏµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨1£©¼ÆË㣺£¨-1£©2015+£¨$\frac{\sqrt{2}}{2}$£©2-£¨¦Ð-3.14£©0+£¨$\frac{1}{2}$£©-1
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{2}{x-1}$+$\frac{1}{x+1}$£©•£¨x2-1£©£¬ÆäÖÐxÂú×ãx2-4x+3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçÏÂͼËùʾ£¬¾­¹ýÕÛµþÄÜΧ³ÉÒ»¸öÀâÖùµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ù¢ÜD£®¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸