【题目】如图,在ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.
(1)求证:四边形ABEF是菱形;
(2)若AB=5,BF=8,AD=,则ABCD的面积是______.
【答案】(1)证明见解析;(2)36.
【解析】试题分析:(1)根据平行四边形的性质和角平分线的性质证明∠BAE=∠BEA,从而可得AB=BE,同理可得AB=AF,再由AF∥BE可得四边形ABEF是菱形;(2)过A作AH⊥BE,根据菱形的性质可得AO=EO,BO=FO,BE=AB=5,AE⊥BF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后可得ABCD的面积.
试题解析:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,
同理:AB=AF,
∴AF=BE,
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AB=AF
∴四边形ABEF是菱形.
(2)过A作AH⊥BE,
∵四边形ABCD是菱形,
∴AO=EO,BO=FO,BE=AB=5,AE⊥BF,
∵BF=8,
∴BO=4,
∴AO==3,
∴AE=6,
∴S菱形ABEF=AEBF=×6×8=24,
∴BEAH=24,
∴AH=,
∵四边形ABCD是平行四边形,
∴BC=AD=,
∴S平行四边形ABCD=×=36,
故答案为:36.
科目:初中数学 来源: 题型:
【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB=,BC=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式从左到右的变形,是因式分解的是( )
A.x2﹣9+6x=(x+3)(x﹣3)+6x
B.(x+5)(x﹣2)=x2+3x﹣10
C.x2﹣8x+16=(x﹣4)2
D.6ab=2a3b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:
(1)a= ,n= ;
(2)补全频数分布直方图;
(3)该校共有2000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为( )
A. (﹣1,﹣2) B. (1,﹣2) C. (2,﹣1) D. (﹣2,1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com