【题目】如图,在的正三角形的网格中,的三个顶点都在格点上.请按要求画图和计算:①仅用无刻度直尺;②保留作图痕迹.
(1)在图1中,画出的边上的中线.
(2)在图2中,求的值.
【答案】(1)答案见解析;(2).
【解析】
(1)利用平行四边形的性质分别作出AB、AC的中点E、F,再利用三角形重心的性质即可作出△ABC的BC边上的中线AD;
(2)利用平行线的性质可得∠AEC=∠FDC,再利用菱形及等边三角形的性质可求得DH、CH的长,继而求得CD的长,从而求得答案.
(1)如图,线段AD就是所求作的中线;
(2)如图:在的正三角形的网格中,
∵MN∥AB∥FD,
∴∠AEC=∠FDC,
∵四边形CMGN为菱形,且边长为5,
∴CG⊥MN,
∴CG⊥FD,
,
∴CG=2OG=5,
∵△GFD为等边三角形,且边长为2,
同理:HG=,
∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,
∴,即,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.
(1)求证:BD是⊙O的切线;
(2)图中线段AD、BD和围成的阴影部分的面积= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时,=_______;
②当α=180°时,=______.
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,OE=,若CEDE=5,则正方形的面积为( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:BC是⊙F的切线;
(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;
(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电子跳蚤游戏盘是如图所示的,.如果跳蚤开始时在边的处,.跳蚤第一步从跳到边的(第1次落点)处,且;第二步从跳到边的(第2次落点)处,且;第三步从跳到边的(第3次落点)处,且;……;跳蚤按上述规则一直跳下去,第次落点为(为正整数),则点与之间的距离为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是( )
A.∠A=60°B.△ACD是直角三角形
C.BC=CDD.点B是△ACD的外心
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com