【题目】如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.
(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).
【答案】(1)见解析;(2)26;(3)+b
【解析】
(1)由∠ACB=∠DCE可得出∠ACD=∠BCE,再利用SAS判定△ACD≌△BCE,即可得到AD=BE;
(2)由等腰直角三角形的性质可得CM=DE,同(1)可证△ACD≌△BCE,得到AD=BE,然后可求AE的长,再判断∠AEB=90°,即可用勾股定理求出AB的长;
(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出DE=2CM,然后利用三角形外角性质推出∠BEN=60°,在Rt△BEN中即可求出BE,由于BE=AD,所以利用AE=AD+DE即可得出答案.
证明:(1)∵∠ACB=∠DCE
∴∠ACB-∠BCD=∠DCE-∠BCD,即∠ACD=∠BCE
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS)
∴AD=BE
(2)∵∠DCE=90°,CD=CE,
∴△DCE为等腰直角三角形,
∵CM⊥DE,
∴CM平分DE,即M为DE的中点
∴CM=DE,
∴DE=2CM=14,
∵∠ACB=∠DCE
∴∠ACB-∠BCD=∠DCE-∠BCD,即∠ACD=∠BCE
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS)
∴AD=BE=10,∠CAD=∠CBE
∴AE=AD+DE=24
如图,设AE,BC交于点H,
在△ACH和△BEH中,
∠CAH+∠ACH=∠EBH+∠BEH,而∠CAH=∠EBH,
∴∠BEH=∠ACH=90°,
∴△ABE为直角三角形
由勾股定理得
(3)由(1)(2)可得△ACD≌△BCE,
∴∠DAC=∠EBC,
∵△ACB,△DCE都是等腰三角形,∠ACB=∠DCE=120°
∴∠CAB=∠CBA=∠CDE=∠CED=30°,
∵CM⊥DE,
∴∠CMD=90°,DM=EM,
∴CD=CE=2CM,DM=EM=CM
∴DE=2CM=2b
∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°,
∴∠NBE=30°,
∴BE=2EN,BN=EN
∵BN=a
∴BE=2EN==AD
∴AE=AD+DE=
科目:初中数学 来源: 题型:
【题目】形如:的函数叫二次函数,它的图象是一条抛物线.类比一元一次方程的解可以看成两条直线的交点的横坐标;则一元二次方程的解可以看成抛物线与直线(轴)的交点的横坐标;也可以看成是抛物线与直线________的交点的横坐标;也可以看成是抛物线________与直线的交点的横坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两个箱子,其中甲箱内有颗球,分别标记号码,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出颗球放入乙箱后,乙箱内球的号码的中位数为.若此时甲箱内有颗球的号码小于,有颗球的号码大于,若他们的中位数都为,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线I表示一条公路,点A, B表示两个村庄.现要在公路l上建一个加油站P.
(1)加油站P到A, B两个村庄距离相等,用直尺(无刻度)和圆规在图l中作出P的位置.
(2)若点A,B到直线l的距离分别是1km和4km,且A,B两个村庄之间的距离为5km,加油站P到A, B两个村庄之间的距离最小,在图2中作出P的位置(作图工具不限),最短距离为__ _ km.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组对关于的方程提出了下列问题.
若使方程为一元二次方程,是否存在?若存在,求出并解此方程.
若使方程为一元一次方程,是否存在?若存在,请求出.你能解决这个问题吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)(特殊情况,探索结论)
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:
AE DB(填“>”、“<”或“=”).
(2)(特例启发,解答题目)
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你将解答过程完整写下来).
(3)(拓展结论,设计新题)
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长.(请你画出相应图形,并直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.
(1)求证:CF=EB;
(2)请你判断AE、AF与BE之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com