【题目】如图,在菱形ABCD中,AB=4,AE⊥BC于点E,点F,G分别是AB,AD的中点,连接EF,FG,若∠EFG=90°,则FG的长为_____.
【答案】2
【解析】
如图,连接BD交AC于点O.根据菱形的性质得到AC⊥BD,根据中位线的判定与性质得到FG∥BD,FG=BD,易证EF∥AC,因为AF=BF,所以BE=CE,根据等边三角形的判定得到△ABC是等边三角形,然后根据题意求得个线段长即可.
如图,连接BD交AC于点O.
∵四边形ABCD是菱形,
∴AC⊥BD,
∵AF=FB,AG=GD,
∴FG∥BD,
∵∠EFG=90°,
∴GF⊥EF,
∴BD⊥EF,
∵AC⊥BD,
∴EF∥AC,
∵AF=BF,
∴BE=EC,
∵AE⊥BC,
∴AB=AC=BC,
∴△ABC是等边三角形,
∵AB=4,
∴OB=2,
∴BD=2OB=4,
∵FG=BD,
∴FG=2,
故答案为2.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=BC,∠ABC=120°,点E是AC上一点,连接BE,且∠BEC=50°,D为点B关于直线AC的对称点,连接CD,将线段EB绕点E顺时针旋转40°得到线段EF,连接DF.
(1)请你在下图中补全图形;
(2)请写出∠EFD的大小,并说明理由;
(3)连接CF,求证:DF=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )
A. 45°,90° B. 90°,45° C. 60°,30° D. 30°,60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,
解答下列问题:
(1)如图1,连接PD,填空:∠PFD= ,四边形PEAD的面积是 ;
(2)如图2,当PF经过点D时,求 △PEF运动时间t的值;
(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请求出S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当题目条件出现角平分线时,我们往往可以构造等腰三角形解决问题.如图1,在△ABC中,∠A=2∠B,CD 平分∠ACB,AD=2,AC=3,求 BC 的长.解决方法:如图 2,在BC 边上取点 E,使 EC=AC,连接 DE.可得△DEC≌△DAC 且△BDE 是等腰三角形,所以 BC 的长为 5.试通过构造等腰三角形解决问题:如图 3,△ABC 中,AB=AC,∠A=20°,BD 平分∠ABC,要想求 AD 的长,仅需知道下列哪些线段的长(BC=a, BD=b, DC=c)
A.a 和 bB.a 和 cC.b 和 cD.a、b 和 c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,AC=BC,点 E 在是 AB 边上一动点(不与 A、B 重合),连接 CE,点 P 是直线 CE 上一个动点.
(1)如图 1,∠ACB=120°,AB=16,E 是 AB 中点,EM=2,N 是射线 CB 上一个动点, 若使得 NP+MP 的值最小,应如何确定 M 点和点 N 的位置?请你在图 2 中画出点 M 和点 N 的位置,并简述画法: 直接写出 NP+MP 的最小值
(2)如图 3,∠ACB=90°,连接 BP, BPC=75°且 BC=BP.求证:PC=PA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角的度数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从如图所示的二次函数的图象中,观察得出了下面五条信息:
①,②,③,④,⑤,
你认为其中正确信息的个数有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com