精英家教网 > 初中数学 > 题目详情

【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成m种不同的等腰三角形,为探究mn之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n3时,m1

2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n4时,m0

3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形?若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n5时,m1

4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形?若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n6时,m1

综上所述,可得表①

n

3

4

5

6

m

1

0

1

1

探究二:

1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)

2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)

n

7

8

9

10

m

你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,

解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设n分别等于4k14k4k+14k+2,其中k是整数,把结果填在表 ③中)

n

4k1

4k

4k+1

4k+2

m

问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了   根木棒.(只填结果)

【答案】(1)见解析;(2)见解析;解决问题:见解析;问题应用:503个不同的等腰三角形,672

【解析】

探究二:

1)周长为7,让腰长从1开始逐个验证即可;

2)周长为8910,方法同上;

解决问题:

问题的本质是,给定三角形的周长n,且n=2a+b,求满足要求的a的整数解的个数m.因此,根据三角形三边关系,我们将a的取值范围用n表示出来,从而就可以确定n在取任意值时,a的整数解个数m

任意一个整数,均可以表示成4k-14k4k+14k+2四种形式当中的一种,让n取这四种值,得出m的值填表;

问题应用:

根据上面探究得出的一般结论,只需看2016符号哪种情况即可.n=2016=504×4m=504-1=503

周长相同的情况下,等边三角形面积最大;

探究二:

171+1+5(舍去);

72+2+3(符合要求);

73+3+1(符合要求);

281+1+6(舍去);

82+2+4(舍去);

83+3+2(符合要求);

91+1+7(舍去);

92+2+5(舍去);

93+3+3(符合要求);

94+4+1(符合要求);

101+1+8(舍去);

102+2+6(舍去);

103+3+4(符合要求);

104+4+2(符合要求);

填表如下:

n

7

8

9

10

m

2

1

2

2

解决问题:

na+a+b2a+b

则:bn2a

根据三角形三边关系定理可知:

2abb0

解得:

n4k1,则a的整数解有k个;

n4k,则ka2ka的整数解有k1个;

n4k+1,则a的整数解有k个;

n4k+2,则a的整数解有k个;

填表如下:

n

4k1

4k

4k+1

4k+2

m

k

k1

k

k

问题应用:

20164×504

k504

则可以搭成k1503个不同的等腰三角形;

当等腰三角形是等边三角形时,面积最大,

2016÷3672

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A在⊙0上,点P是⊙0外一点.PA切⊙0于点A.连接OP交⊙0于点D,作ABOP于点C,交⊙0于点B,连接PB.

(1)求证:PB是⊙0的切线;

(2)PC=9AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).

由这些数据,科学家推测出植物每天高度增长量y是温度x的函数.且这种函数是反比例函数、一次函数和二次函数中的一种.

1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;

2)温度为多少时,这种植物每天高度的增长量最大?

3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,AB5AC3AD2

求:(1BC的长;

2)△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:

(1)八年级(3)班学生总人数是   ,并将条形统计图补充完整;

(2)刘老师发现报名参加植物识别的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC中,ACB=90°ABC=25°OAB的中点. OA绕点O逆时针旋转θ °OP0<θ<180,当BCP恰为轴对称图形时,θ的值为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是圆上一点,点D的中点,延长AD至点E,使得ABBE

1)求证:ACF∽△EBF

2)若BE10tanE,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数的图象,且与轴交点的横坐标分别为,其中,下列结论:①;②;③.正确的说法有:______.(请写所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程2有非负整数解,则满足条件的所有整数a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

同步练习册答案