精英家教网 > 初中数学 > 题目详情

【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x为整数

直接写出每天游客居住的房间数量yx的函数关系式.

设宾馆每天的利润为W,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?

某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000,②宾馆为游客居住的房间共支出费用没有超过600,③每个房间刚好住满2问:这天宾馆入住的游客人数最少有多少人?

【答案】(1),,且x为整数;(2)当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;(3)20人.

【解析】

1)根据每天游客居住的房间数量等于50-减少的房间数即可解决问题.

2)构建二次函数,利用二次函数的性质解决问题.

3)根据条件列出不等式组即可解决问题.

解:根据题意,得:,,x为整数
,
,W取得最大值,,
答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;

,
解得,
,这天宾馆入住的游客人数最少,
最少人数为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca≠0)的对称轴为直线x1,与x轴的一个交点坐标为(﹣10),与y轴交点为(03),其部分图象如图所示,则下列结论错误的是(  )

A. b4ac≥0

B. 关于x的方程ax+bx+c30有两个不相等的实数根

C. ab+c0

D. y0时,﹣1x3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)设计费能达到24000元吗?为什么?

(3)当x是多少米时,设计费最多?最多是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象经过点C(0,-2),顶点D的坐标为(1),与轴交于AB两点.

(1)求抛物线的解析式.

(2)连接ACE为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.

3)点F0)是轴上一动点,当为何值时,的值最小.并求出这个最小值.

4)点C关于轴的对称点为H,当取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.

1)求甲、乙两车行驶的速度VV.

2)求m的值.

3)若甲车没有故障停车,求可以提前多长时间两车相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为的正方形中,点上一点,点上一点.点关于直线的对称点恰好在延长线上,于点.点的中点,若,则=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)(2015黄石)如图,⊙O的直径AB=4∠ABC=30°BC⊙ODDBC的中点.

1)求BC的长;

2)过点DDE⊥AC,垂足为E,求证:直线DE⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数ya(x1)2+4的图象经过点(10)

(1)求这个二次函数的解析式;

(2)判断这个二次函数的开口方向,对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

同步练习册答案