精英家教网 > 初中数学 > 题目详情
14.计算:($\sqrt{6}$+$\sqrt{10}$×$\sqrt{15}$)×$\sqrt{3}$=18$\sqrt{2}$.

分析 根据二次根式的乘法法则运算得到原式=$\sqrt{6×3}$+$\sqrt{10×15×3}$,然后化简后合并即可.

解答 解:原式=$\sqrt{6×3}$+$\sqrt{10×15×3}$
=3$\sqrt{2}$+15$\sqrt{2}$
=18$\sqrt{2}$.
故答案为18$\sqrt{2}$.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.从-3,-2,-1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程$\frac{k-1}{x+1}$=k-2有解,且关于x的一次函数y=(k+$\frac{3}{2}$)x+2不经过第四象限的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在计算(x+y)(x-2y)-my(nx-y)(m、n均为常数)的值时,把x、y的值代入计算,粗心的小晨和小红把y的值看错了,但结果都等于9.细心的小敏把正确的x、y的值代入计算,结果恰好也是9.为了探个究竟,她又把y的值随机地换成了2006,结果竟然还是9.根据以上情况,请你求出m、n和x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:($\frac{{a}^{2}-4}{{a}^{2}-4a+4}$-$\frac{2}{2-a}$)÷$\frac{2}{{a}^{2}-2a}$,其中a是方程x2+3x-10=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若点P(a,b)在直线y=-x+5上,又在双曲线$y=\frac{3}{x}$上,则a2b+ab2=15.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.大家知道,因式分解是数学中的一种重要的恒等变形,运用因式分解的思想方法有时能取得意想不到的效果,如化简:$\frac{1}{\sqrt{2}+1}$=$\frac{2-1}{\sqrt{2}+1}$=$\frac{(\sqrt{2})^{2}-1}{\sqrt{2}+1}$=$\frac{(\sqrt{2}+1)(\sqrt{2}-1)}{\sqrt{2}+1}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{3-2}{\sqrt{3}+\sqrt{2}}$=$\frac{(\sqrt{3})^{2}-(\sqrt{2})^{2}}{\sqrt{3}+\sqrt{2}}$=$\frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}$-$\sqrt{2}$.
(1)化简:$\frac{1}{\sqrt{4}+\sqrt{3}}$;
(2)从以上化简结构中找出规律,写出用n(n≥1,且n为你整数)表示上面规律的式子;
(3)根据以上规律计算:
($\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+$\frac{1}{\sqrt{5}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2015}+\sqrt{2014}}$)($\sqrt{2015}$+$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.分式$\frac{3}{2x}$,$\frac{x}{2x+4}$,$\frac{1-x}{x+2}$的最简公分母是2x(x+2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)$3\sqrt{2}-2\sqrt{12}-4\sqrt{\frac{1}{8}}+3\sqrt{48}$      
(2)${(1-\sqrt{3})^2}-{(\frac{1}{2})^{-1}}+\frac{4}{{\sqrt{3}+1}}+{(\sqrt{2}-1)^0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如下表上边的表格给出了直线a上部分点(x,y)的坐标值,下边的表格给出了直线b上部分点(x,y)的坐标值,
x-209
y-5-36
x-201.54
y31-0.5-3
(1)根据表格中的数据直接写出直线a和b的解析式;
(2)求出直线a和b的交点的坐标.

查看答案和解析>>

同步练习册答案