【题目】如图,
为线段
上一动点(不与点
、
重合),在
同侧分别作等边
和等边
,
与
交于点
,
与
交于点
,
与
交于点
,连接
、
,以下五个结论:①
;②
;③
;④
;⑤
平分
.一定成立的结论有______________;
![]()
【答案】①②③⑤.
【解析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;
③根据②△CQB≌△CPA(ASA),可知③正确;
④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;
⑤由BC∥DE,得到∠CBE=∠BED,由∠CBE=∠DAE,得到∠AOB=∠OAE+∠AEO=60°可得出∠AOE=120°,再利用三角形相似以及等边三角形的知识可知⑤正确;
解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴①正确;
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE
∴②正确;
∵△CQB≌△CPA,
∴AP=BQ
∴③正确;
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,
∵∠PBO=∠PAC,∠BOP=∠PCA,
∴△BPO∽△APC,
∴
,
∴
,
∵∠APB=∠CPO,
∴△APB∽△CPO,
∴∠COP=∠ABP=60°,
∴∠COA=∠COE=60°,
∴OC平分∠AOE,故⑤正确;
![]()
故答案为:①②③⑤.
科目:初中数学 来源: 题型:
【题目】如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
定义:有三个内角相等的四边形叫“和谐四边形”.
![]()
(1)在“和谐四边形”
中,若
,则
;
(2)如图,折叠平行四边形纸片
,使顶点
,
分别落在边
,
上的点
,
处,折痕分别为
,
.
求证:四边形
是“和谐四边形”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,射线OM平分∠AOC,ON平分∠BOC.
![]()
(1)如果∠BOC=30°,求∠MON的度数;
(2)如果∠AOB=α,∠BOC=30°,其他条件不变,求∠MON的度数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将
沿着过
中点
的直线折叠,使点
落在
边上的
,称为第
次操作,折痕
到
的距离记为
;还原纸片后,再将
沿着过
中点
的直线折叠,使点
落在
边上的
处,称为第
次操作,折痕
到
的距离记为
;按上述方法不断操作下去…,经过第
次操作后得到的折痕
,到
的距离记为
,若
,则
的值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,滑动调节式遮阳伞的立柱
垂直于地面
,
为立柱上的滑动调节点,伞体的截面示意图为
,
为
中点,
,
,
,
.当点
位于初始位置
时,点
与
重合(图2).根据生活经验,当太阳光线与
垂直时,遮阳效果最佳.
![]()
(1)上午10:00时,太阳光线与地面的夹角为
(图3),为使遮阳效果最佳,点
需从
上调多少距离?(结果精确到
)
(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点
在(1)的基础上还需上调多少距离?(结果精确到
)
(参考数据:
,
,
,
,
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在数轴上点
表示数
,点
表示数
,点
表示数
,
是多项式
的一次项系数,
是绝对值最小的整数,单项式
的次数为
.
![]()
(1)
= ,
= ,
= ;
(2)若将数轴在点
处折叠,则点
与点
重合( 填“能”或“不能”);
(3)点
开始在数轴上运动,若点
以每秒1个单位长度的速度向右运动,同时,点
和点
分别以每秒3个单位长度和2个单位长度的速度向左运动,
秒钟过后,若点
与点B之间的距离表示为
,点
与点
之间的距离表示为
,则
= ,
= (用含
的代数式表示);
(4)请问:AB+BC的值是否随着时间
的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线AB与直线CD相交于点O,OE平分
.
![]()
(1)如图①,若
,求
的度数;
(2)如图②,射线OF在
内部.
①若
,判断OF是否为
的平分线,并说明理由;
②若OF平分
,
,求
的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
![]()
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com