分析 先证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=$\frac{1}{2}$CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.
解答 证明:∵BE⊥EC,
∴∠BEF=∠CEB=90°.
∵∠1=∠2,
∴∠F=∠BCF,
∴BF=BC,
∵BE⊥CF,
∴CE=$\frac{1}{2}$CF,
在△ABC中,AB=AC,∠BAC=90°,
∴∠CBA=45°,
∴∠F=(180-45)°÷2=67.5°,∠FBE=22.5°,
∴∠ADB=67.5°,
∴∠F=∠ADB,
在△ADB和△AFC中,
$\left\{\begin{array}{l}{∠F=∠ADB}\\{∠BAC=∠FAC}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△AFC(AAS),
∴BD=FC,
∴BD=2CE.
点评 此题主要考查了全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定与性质;熟练掌握等腰直角三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{x+y}{xy}$ | B. | $\frac{x+y}{2}$ | C. | $\frac{xy}{x+y}$ | D. | $\frac{2xy}{x+y}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com