【题目】如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.求证:
(1)△ABC∽△POM;
(2)2OA2=OPBC.
【答案】
(1)证明:∵直线PM切⊙O于点M,
∴∠PMO=90°,
∵弦AB是直径,
∴∠ACB=90°,
∴∠ACB=∠PMO,
∵AC∥PM,
∴∠CAB=∠P,
∴△ABC∽△POM;
(2)证明:∵△ABC∽△POM,
∴ ,
又AB=2OA,OA=OM,
∴ ,
∴2OA2=OPBC.
【解析】(1)因为PM切⊙O于点M,所以∠PMO=90°,又因为弦AB是直径,所以∠ACB=∠PMO=90°,再有条件弦AC∥PM,可证得∠CAB=∠P,进而可证得△ABC∽△POM;(2)由(1)可得 ,又因为AB=2OA,OA=OM;所以2OA2=OPBC.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A. 角的内部到角的两边的距离相等的点在角的平分线上
B. 角平分线上的点到这个角两边的距离相等
C. 三角形三条角平分线的交点到三条边的距离相等
D. 以上均不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉).设摄氏温度为x(℃)华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为﹣20℃时,华氏温度为﹣4℉
请根据以上信息,解答下列问题
(1)仔细观察图中数据,试求出y与x的函数关系式;
(2)当摄氏温度为﹣5℃时,华氏温度为多少?
(3)当华氏温度为59℉时,摄氏温度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四种结论:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正确结论的序号是( )
A.①②
B.②③
C.②④
D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于函数y= ,下列说法错误的是( )
A.这个函数的图象位于第一、第三象限
B.当x>0时,y随x的增大而增大
C.这个函数的图象既是轴对称图形又是中心对称图形
D.当x<0时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系网格中,△ABC的顶点都在格点上,点C坐标(0,﹣1).
(1)作出△ABC关于原点对称的△A1B1C1 , 并写出点A1的坐标;
(2)把△ABC绕点C逆时针旋转90°,得△A2B2C,画出△A2B2C,并写出点A2的坐标;
(3)直接写出△A2B2C的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是 cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com